Title:
|
Graphs with small diameter determined by their $D$-spectra (English) |
Author:
|
Liu, Ruifang |
Author:
|
Xue, Jie |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
1-17 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a connected graph with vertex set $V(G)=\{v_{1},v_{2},\ldots ,v_{n}\}$. The distance matrix $D(G)=(d_{ij})_{n\times n}$ is the matrix indexed by the vertices of\/ $G$, where $d_{ij}$ denotes the distance between the vertices $v_{i}$ and $v_{j}$. Suppose that $\lambda _{1}(D)\geq \lambda _{2}(D)\geq \nobreak \cdots \geq \lambda _{n}(D)$ are the distance spectrum of $G$. The graph $G$ is said to be determined by its \hbox {$D$-spectrum} if with respect to the distance matrix $D(G)$, any graph having the same spectrum as $G$ is isomorphic to $G$. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their $D$-spectra. (English) |
Keyword:
|
distance spectrum |
Keyword:
|
distance characteristic polynomial |
Keyword:
|
$D$-spectrum determined by its $D$-spectrum |
MSC:
|
05C50 |
idZBL:
|
Zbl 06861564 |
idMR:
|
MR3783582 |
DOI:
|
10.21136/CMJ.2018.0505-15 |
. |
Date available:
|
2018-03-19T10:23:40Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147116 |
. |
Reference:
|
[1] Cioabă, S. M., Haemers, W. H., Vermette, J. R., Wong, W.: The graphs with all but two eigenvalues equal to $\pm 1$.J. Algebra Comb. 41 (2015), 887-897. Zbl 1317.05111, MR 3328184, 10.1007/s10801-014-0557-y |
Reference:
|
[2] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications.J. A. Barth Verlag, Heidelberg (1995). Zbl 0824.05046, MR 1324340, 10.1002/zamm.19960760305 |
Reference:
|
[3] Günthard, H. H., Primas, H.: Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit systemen konjugierter Bindungen.Helv. Chim. Acta 39 (1956), 1645-1653 German. 10.1002/hlca.19560390623 |
Reference:
|
[4] Jin, Y.-L., Zhang, X.-D.: Complete multipartite graphs are determined by their distance spectra.Linear Algebra Appl. 448 (2014), 285-291. Zbl 1285.05114, MR 3182986, 10.1016/j.laa.2014.01.029 |
Reference:
|
[5] Lu, L., Huang, Q. X., Huang, X. Y.: The graphs with exactly two distance eigenvalues different from $-1$ and $-3$.J. Algebr. Comb. 45 (2017), 629-647. Zbl 1358.05176, MR 3604069, 10.1007/s10801-016-0718-2 |
Reference:
|
[6] Lin, H. Q.: On the least distance eigenvalue and its applications on the distance spread.Discrete Math. 338 (2015), 868-874. Zbl 1371.05064, MR 3318625, 10.1016/j.disc.2015.01.00610.1016/j.disc.2015.01.006 |
Reference:
|
[7] Lin, H. Q., Hong, Y., Wang, J. F., Shu, J. L.: On the distance spectrum of graphs.Linear Algebra Appl. 439 (2013), 1662-1669. Zbl 1282.05132, MR 3073894, 10.1016/j.laa.2013.04.019 |
Reference:
|
[8] Lin, H. Q., Zhai, M. Q., Gong, S. C.: On graphs with at least three distance eigenvalues less than $-1$.Linear Algebra Appl. 458 (2014), 548-558. Zbl 1296.05123, MR 3231834, 10.1016/j.laa.2014.06.040 |
Reference:
|
[9] Liu, R. F., Xue, J., Guo, L. T.: On the second largest distance eigenvalue of a graph.Linear Multilinear Algebra 65 (2017), 1011-1021. Zbl 1360.05099, MR 3610302, 1080/03081087.2016.1221376 |
Reference:
|
[10] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?.Linear Algebra Appl. 373 (2003), 241-272. Zbl 1026.05079, MR 2022290, 10.1016/S0024-3795(03)00483-X |
Reference:
|
[11] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs.Discrete Math. 309 (2009), 576-586. Zbl 1205.05156, MR 2499010, 10.1016/j.disc.2008.08.019 |
Reference:
|
[12] Xue, J., Liu, R. F., Jia, H. C.: On the distance spectrum of trees.Filomat 30 (2016), 1559-1565. Zbl 06749814, MR 3530101, 10.2298/FIL1606559X |
. |