Title:
|
A higher rank Selberg sieve and applications (English) |
Author:
|
Vatwani, Akshaa |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
169-193 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings. (English) |
Keyword:
|
Selberg sieve |
Keyword:
|
bounded gaps |
Keyword:
|
prime $k$-tuples |
MSC:
|
11N05 |
MSC:
|
11N35 |
MSC:
|
11N36 |
idZBL:
|
Zbl 06861574 |
idMR:
|
MR3783592 |
DOI:
|
10.21136/CMJ.2017.0410-16 |
. |
Date available:
|
2018-03-19T10:28:26Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147128 |
. |
Reference:
|
[1] Friedlander, J., Iwaniec, H.: Opera de Cribro.Colloquium Publications, American Mathematical Society 57, Providence (2010). Zbl 1226.11099, MR 2647984, 10.1090/coll/057 |
Reference:
|
[2] Halberstam, H., Richert, H.-E.: Sieve Methods.London Mathematical Society Monographs 4, Academic Press, London (1974). Zbl 0298.10026, MR 0424730 |
Reference:
|
[3] Hooley, C.: On Artin's conjecture.J. Reine Angew. Math. 225 (1967), 209-220. Zbl 0221.10048, MR 0207630, 10.1515/crll.1967.225.209 |
Reference:
|
[4] Lagarias, J. C., Odlyzko, A. M.: Effective versions of the Chebotarev density theorem.Algebraic Number Fields: $L$-Functions and Galois Properties Proc. Sympos., Univ. Durham, Durham, 1975, Academic Press, London (1977), 409-464. Zbl 0362.12011, MR 0447191 |
Reference:
|
[5] Maynard, J.: Small gaps between primes.Ann. Math. (2) 181 (2015), 383-413. Zbl 1306.11073, MR 3272929, 10.4007/annals.2015.181.1.7 |
Reference:
|
[6] Murty, M. R.: Artin's Conjecture and Non-abelian Sieves.Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1980). MR 2940944 |
Reference:
|
[7] Murty, M. R., Murty, V. K.: A variant of the Bombieri-Vinogradov theorem.Number Theory Proc. Conf., Montreal, 1985, CMS Conf. Proc. 7 (1987), 243-272. Zbl 0619.10039, MR 0894326 |
Reference:
|
[8] Pollack, P.: Bounded gaps between primes with a given primitive root.Algebra Number Theory 8 (2014), 1769-1786. Zbl 06361769, MR 3272281, 10.2140/ant.2014.8.1769 |
Reference:
|
[9] Polymath, D. H. J.: Variants of the Selberg sieve, and bounded intervals containing many primes.Res. Math. Sci. (electronic only) 1 (2014), Paper No. 12, 83 pages erratum ibid. (electronic only) 2 2015 Paper No. 15, 2 pages. Zbl 06587992, MR 3374754, 10.1186/s40687-014-0012-7 |
Reference:
|
[10] Selberg, A.: Sieve methods.1969 Number Theory Institute Proc. Sympos. Pure Math. 20, Stony Brook, 1969, Amer. Mat. Soc., Providence (1971), 311-351. Zbl 0222.10048, MR 0567686, 10.1090/pspum/020/0567686 |
Reference:
|
[11] Selberg, A.: Collected Papers. Volume II.Springer, Berlin (1991). Zbl 0729.11001, MR 1295844 |
Reference:
|
[12] Thorner, J.: Bounded gaps between primes in Chebotarev sets.Res. Math. Sci. (electronic only) 1 (2014), Paper No. 4, 16 pages. Zbl 06588225, MR 3344173, 10.1186/2197-9847-1-4 |
Reference:
|
[13] Vatwani, A.: Bounded gaps between Gaussian primes.J. Number Theory 171 (2017), 449-473. Zbl 06643869, MR 3556693, 10.1016/j.jnt.2016.07.008 |
Reference:
|
[14] Zhang, Y.: Bounded gaps between primes.Ann. Math. (2) 179 (2014), 1121-1174. Zbl 1290.11128, MR 3171761, 10.4007/annals.2014.179.3.7 |
. |