Previous |  Up |  Next

Article

Title: A higher rank Selberg sieve and applications (English)
Author: Vatwani, Akshaa
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 169-193
Summary lang: English
.
Category: math
.
Summary: We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings. (English)
Keyword: Selberg sieve
Keyword: bounded gaps
Keyword: prime $k$-tuples
MSC: 11N05
MSC: 11N35
MSC: 11N36
idZBL: Zbl 06861574
idMR: MR3783592
DOI: 10.21136/CMJ.2017.0410-16
.
Date available: 2018-03-19T10:28:26Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147128
.
Reference: [1] Friedlander, J., Iwaniec, H.: Opera de Cribro.Colloquium Publications, American Mathematical Society 57, Providence (2010). Zbl 1226.11099, MR 2647984, 10.1090/coll/057
Reference: [2] Halberstam, H., Richert, H.-E.: Sieve Methods.London Mathematical Society Monographs 4, Academic Press, London (1974). Zbl 0298.10026, MR 0424730
Reference: [3] Hooley, C.: On Artin's conjecture.J. Reine Angew. Math. 225 (1967), 209-220. Zbl 0221.10048, MR 0207630, 10.1515/crll.1967.225.209
Reference: [4] Lagarias, J. C., Odlyzko, A. M.: Effective versions of the Chebotarev density theorem.Algebraic Number Fields: $L$-Functions and Galois Properties Proc. Sympos., Univ. Durham, Durham, 1975, Academic Press, London (1977), 409-464. Zbl 0362.12011, MR 0447191
Reference: [5] Maynard, J.: Small gaps between primes.Ann. Math. (2) 181 (2015), 383-413. Zbl 1306.11073, MR 3272929, 10.4007/annals.2015.181.1.7
Reference: [6] Murty, M. R.: Artin's Conjecture and Non-abelian Sieves.Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1980). MR 2940944
Reference: [7] Murty, M. R., Murty, V. K.: A variant of the Bombieri-Vinogradov theorem.Number Theory Proc. Conf., Montreal, 1985, CMS Conf. Proc. 7 (1987), 243-272. Zbl 0619.10039, MR 0894326
Reference: [8] Pollack, P.: Bounded gaps between primes with a given primitive root.Algebra Number Theory 8 (2014), 1769-1786. Zbl 06361769, MR 3272281, 10.2140/ant.2014.8.1769
Reference: [9] Polymath, D. H. J.: Variants of the Selberg sieve, and bounded intervals containing many primes.Res. Math. Sci. (electronic only) 1 (2014), Paper No. 12, 83 pages erratum ibid. (electronic only) 2 2015 Paper No. 15, 2 pages. Zbl 06587992, MR 3374754, 10.1186/s40687-014-0012-7
Reference: [10] Selberg, A.: Sieve methods.1969 Number Theory Institute Proc. Sympos. Pure Math. 20, Stony Brook, 1969, Amer. Mat. Soc., Providence (1971), 311-351. Zbl 0222.10048, MR 0567686, 10.1090/pspum/020/0567686
Reference: [11] Selberg, A.: Collected Papers. Volume II.Springer, Berlin (1991). Zbl 0729.11001, MR 1295844
Reference: [12] Thorner, J.: Bounded gaps between primes in Chebotarev sets.Res. Math. Sci. (electronic only) 1 (2014), Paper No. 4, 16 pages. Zbl 06588225, MR 3344173, 10.1186/2197-9847-1-4
Reference: [13] Vatwani, A.: Bounded gaps between Gaussian primes.J. Number Theory 171 (2017), 449-473. Zbl 06643869, MR 3556693, 10.1016/j.jnt.2016.07.008
Reference: [14] Zhang, Y.: Bounded gaps between primes.Ann. Math. (2) 179 (2014), 1121-1174. Zbl 1290.11128, MR 3171761, 10.4007/annals.2014.179.3.7
.

Files

Files Size Format View
CzechMathJ_68-2018-1_11.pdf 390.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo