Previous |  Up |  Next

Article

Title: $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality (English)
Author: Chao, Xiaoli
Author: Lv, Yusha
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 195-217
Summary lang: English
.
Category: math
.
Summary: We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório. (English)
Keyword: weighted Poincaré inequality
Keyword: $\delta $-stability
Keyword: $L^{p}$ harmonic $1$-form
Keyword: property $(\mathcal {P}_\rho )$
MSC: 53C42
MSC: 53C50
idZBL: Zbl 06861575
idMR: MR3783593
DOI: 10.21136/CMJ.2018.0415-16
.
Date available: 2018-03-19T10:28:49Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147129
.
Reference: [1] Calderbank, D. M. J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry.J. Funct. Anal. 173 (2000), 214-255. Zbl 0960.58010, MR 1760284, 10.1006/jfan.2000.3563
Reference: [2] Carron, G.: $L^2$-cohomologie et inégalités de Sobolev.Math. Ann. 314 (1999), 613-639 French. Zbl 0933.35054, MR 1709104, 10.1007/s002080050310
Reference: [3] Cavalcante, M. P., Mirandola, H., Vitório, F.: $L^2$ harmonic $1$-forms on submanifolds with finite total curvature.J. Geom. Anal. 24 (2014), 205-222. Zbl 1308.53056, MR 3145922, 10.1007/s12220-012-9334-0
Reference: [4] Chao, X., Lv, Y.: $L^2$ harmonic $1$-forms on submanifolds with weighted Poincaré inequality.J. Korean Math. Soc. 53 (2016), 583-595. Zbl 1339.53059, MR 3498284, 10.4134/JKMS.j150190
Reference: [5] Dung, N. T., Seo, K.: Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature.Ann. Global Anal. Geom. 41 (2012), 447-460. Zbl 1242.53073, MR 2891296, 10.1007/s10455-011-9293-x
Reference: [6] Dung, N. T., Seo, K.: Vanishing theorems for $L^2$ harmonic $1$-forms on complete submanifolds in a Riemannian manifold.J. Math. Anal. Appl. 423 (2015), 1594-1609. Zbl 1303.53067, MR 3278217, 10.1016/j.jmaa.2014.10.076
Reference: [7] Fu, H.-P., Li, Z.-Q.: $L^2$ harmonic $1$-forms on complete submanifolds in Euclidean space.Kodai Math. J. 32 (2009), 432-441. Zbl 1182.53048, MR 2582010, 10.2996/kmj/1257948888
Reference: [8] Greene, R. E., Wu, H.: Integrals of subharmonic functions on manifolds of nonnegative curvature.Invent. Math. 27 (1974), 265-298. Zbl 0342.31003, MR 0382723, 10.1007/BF01425500
Reference: [9] Greene, R. E., Wu, H.: Harmonic forms on noncompact Riemannian and Kähler manifolds.Mich. Math. J. 28 (1981), 63-81. Zbl 0477.53058, MR 0600415, 10.1307/mmj/1029002458
Reference: [10] Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds.Commun. Pure Appl. Math. 27 (1974), 715-727. Zbl 0295.53025, MR 0365424, 10.1002/cpa.3160270601
Reference: [11] Kawai, S.: Operator $\triangle-aK$ on surfaces.Hokkaido Math. J. 17 (1988), 147-150. Zbl 0653.53044, MR 0945852, 10.14492/hokmj/1381517802
Reference: [12] Lam, K.-H.: Results on a weighted Poincaré inequality of complete manifolds.Trans. Am. Math. Soc. 362 (2010), 5043-5062. Zbl 1201.53041, MR 2657671, 10.1090/S0002-9947-10-04894-4
Reference: [13] Li, P.: Geometric Analysis.Cambridge Studies in Advanced Mathematics 134, Cambridge University Press, Cambridge (2012). Zbl 1246.53002, MR 2962229, 10.1017/CBO9781139105798
Reference: [14] Li, P., Schoen, R.: $L^p$ and mean value properties of subharmonic functions on Riemannian manifolds.Acta Math. 153 (1984), 279-301. Zbl 0556.31005, MR 0766266, 10.1007/BF02392380
Reference: [15] Li, P., Wang, J.: Complete manifolds with positive spectrum.J. Differ. Geom. 58 (2001), 501-534. Zbl 1032.58016, MR 1906784, 10.4310/jdg/1090348357
Reference: [16] Miyaoka, R.: $L^2$ harmonic $1$-forms on a complete stable minimal hypersurface.Geometry and Global Analysis T. Kotake et al. Int. Research Inst., Sendai 1993, Tôhoku Univ., Mathematical Institute (1993), 289-293. Zbl 0912.53042, MR 1361194
Reference: [17] Palmer, B.: Stability of minimal hypersurfaces.Comment. Math. Helv. 66 (1991), 185-188. Zbl 0736.53054, MR 1107838, 10.1007/BF02566644
Reference: [18] Sang, N. D., Thanh, N. T.: Stable minimal hypersurfaces with weighted Poincaré inequality in a Riemannian manifold.Commum. Korean. Math. Soc. 29 (2014), 123-130. Zbl 1288.53055, MR 3162987, 10.4134/CKMS.2014.29.1.123
Reference: [19] Seo, K.: $L^2$ harmonic $1$-forms on minimal submanifolds in hyperbolic space.J. Math. Anal. Appl. 371 (2010), 546-551. Zbl 1195.53087, MR 2670132, 10.1016/j.jmaa.2010.05.048
Reference: [20] Seo, K.: Rigidity of minimal submanifolds in hyperbolic space.Arch. Math. 94 (2010), 173-181. Zbl 1185.53069, MR 2592764, 10.1007/s00013-009-0096-2
Reference: [21] Seo, K.: $L^p$ harmonic $1$-forms and first eigenvalue of a stable minimal hypersurface.Pac. J. Math. 268 (2014), 205-229. Zbl 1295.53067, MR 3207607, 10.2140/pjm.2014.268.205
Reference: [22] Shiohama, K., Xu, H.: The topological sphere theorem for complete submanifolds.Compos. Math. 107 (1997), 221-232. Zbl 0905.53038, MR 1458750, 10.1023/A:1000189116072
Reference: [23] Tam, L.-F., Zhou, D.: Stability properties for the higher dimensional catenoid in $\mathbb{R}^{n+1}$.Proc. Am. Math. Soc. 137 (2009), 3451-3461. Zbl 1184.53016, MR 2515414, 10.1090/S0002-9939-09-09962-6
Reference: [24] Vieira, M.: Vanishing theorems for $L^2$ harmonic forms on complete Riemannian manifolds.Geom. Dedicata 184 (2016), 175-191. Zbl 1353.53047, MR 3547788, 10.1007/s10711-016-0165-1
Reference: [25] Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry.Indiana Univ. Math. J. 25 (1976), 659-670 erratum ibid. 31 1982 607. Zbl 0335.53041, MR 0417452, 10.1512/iumj.1976.25.25051
Reference: [26] Yun, G.: Total scalar curvature and $L^2$ harmonic $1$-forms on a minimal hypersurface in Euclidean space.Geom. Dedicata. 89 (2002), 135-141. Zbl 1002.53042, MR 1890955, 10.1023/A:1014211121535
.

Files

Files Size Format View
CzechMathJ_68-2018-1_12.pdf 360.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo