Previous |  Up |  Next

Article

Title: On generalized conditional cumulative past inaccuracy measure (English)
Author: Ghosh, Amit
Author: Kundu, Chanchal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 2
Year: 2018
Pages: 167-193
Summary lang: English
.
Category: math
.
Summary: The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order $\alpha $ and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI are discussed. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Finally, the role of GCCPI in reliability modeling has also been investigated for a real-life problem. (English)
Keyword: cumulative past inaccuracy
Keyword: marginal and conditional past lifetimes
Keyword: conditional proportional reversed hazard rate model
Keyword: usual stochastic order
MSC: 60E15
MSC: 62B10
MSC: 62H05
MSC: 62N05
MSC: 94A17
idZBL: Zbl 06890304
idMR: MR3795245
DOI: 10.21136/AM.2018.0170-17
.
Date available: 2018-05-09T08:54:46Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147188
.
Reference: [1] Abbasnejad, M.: Some characterization results based on dynamic survival and failure entropies.Commun. Stat. Appl. Methods 18 (2011), 787-798. 10.5351/ckss.2011.18.6.787
Reference: [2] Ahmadi, J., Crescenzo, A. Di, Longobardi, M.: On dynamic mutual information for bivariate lifetimes.Adv. Appl. Probab. 47 (2015), 1157-1174. Zbl 1355.94022, MR 3433300, 10.1239/aap/1449859804
Reference: [3] Akaike, H.: Information measures and model selection.Bull. Int. Stat. Inst. 50 (1983), 277-290. Zbl 0578.62059, MR 0820726
Reference: [4] Baratpour, S., Rad, A. H.: Testing goodness-of-fit for exponential distribution based on cumulative residual entropy.Commun. Stat., Theory Methods 41 (2012), 1387-1396. Zbl 1319.62095, MR 2902993, 10.1080/03610926.2010.542857
Reference: [5] Burnham, K. P., Anderson, D. R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.Springer, New York (2002). Zbl 1005.62007, MR 1919620, 10.1007/b97636
Reference: [6] Cahill, N. D., Schnabel, J. A., Noble, J. A., Hawkes, D. J.: Overlap invariance of cumulative residual entropy measures for multimodal image alignment.Medical Imaging 2009 J. P. W. Pluim, B. M. Dawant Proceedings of SPIE 7259, Society of Photo-Optical Instrumentation Engineers, Washington (2009), Article ID 72590I. 10.1117/12.811585
Reference: [7] Choe, Y.: Information criterion for minimum cross-entropy model selection.Available at https://arxiv.org/abs/1704.04315 (2017), 32 pages.
Reference: [8] Crescenzo, A. Di, Longobardi, M.: On cumulative entropies.J. Stat. Plann. Inference 139 (2009), 4072-4087. Zbl 1172.94543, MR 2558351, 10.1016/j.jspi.2009.05.038
Reference: [9] Crescenzo, A. Di, Longobardi, M.: Stochastic comparisons of cumulative entropies.Stochastic Orders in Reliability and Risk H. Li, X. Li Lecture Notes in Statistics 208, Springer, New York (2013), 167-182. Zbl 1312.62011, MR 3156874, 10.1007/978-1-4614-6892-9_8
Reference: [10] Crescenzo, A. Di, Longobardi, M.: Some properties and applications of cumulative \hbox{Kullback}-Leibler information.Appl. Stoch. Models Bus. Ind. 31 (2015), 875-891. MR 3445978, 10.1002/asmb.2116
Reference: [11] Ebrahimi, N., Soofi, E. S., Soyer, R.: Information measures in perspective.Int. Stat. Rev. 78 (2010), 383-412. MR 2665834, 10.1111/j.1751-5823.2010.00105.x
Reference: [12] Fraser, D. A. S.: On information in statistics.Ann. Math. Stat. 36 (1965), 890-896. Zbl 0141.35501, MR 0176550, 10.1214/aoms/1177700061
Reference: [13] Ghosh, A., Kundu, C.: Bivariate extension of (dynamic) cumulative residual and past inaccuracy measures.(to appear) in Stat. Pap. MR 3795245, 10.1007/s00362-017-0917-5
Reference: [14] Ghosh, A., Kundu, C.: Chernoff distance for conditionally specified models.(to appear) in Stat. Pap. 10.1007/s00362-016-0804-5
Reference: [15] Ghosh, A., Kundu, C.: On some dynamic generalized measures of information for conditionally specified models in past life.Statistics 51 (2017), 1398-1418. Zbl 06825550, MR 3734030, 10.1080/02331888.2017.1335315
Reference: [16] Gumbel, E. J.: Bivariate logistic distributions.J. Am. Stat. Assoc. 56 (1961), 335-349. Zbl 0099.14502, MR 0158451, 10.2307/2282259
Reference: [17] Jurafsky, D., Martin, J. H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition.Prentice-Hall, Englewood Cliffs (2009).
Reference: [18] Kayal, S., Sunoj, S. M.: Generalized Kerridge's inaccuracy measure for conditionally specified models.Commun. Stat., Theory Methods 46 (2017), 8257-8268. Zbl 06790749, MR 3660053, 10.1080/03610926.2016.1177083
Reference: [19] Kent, J. T.: Robust properties of likelihood ratio tests.Biometrika 69 (1982), 19-27. Zbl 0485.62031, MR 0655667, 10.1093/biomet/69.1.19
Reference: [20] Kent, J. T.: Information gain and a general measure of correlation.Biometrika 70 (1983), 163-173. Zbl 0521.62003, MR 0742986, 10.1093/biomet/70.1.163
Reference: [21] Kerridge, D. F.: Inaccuracy and inference.J. R. Stat. Soc., Ser. B 23 (1961), 184-194. Zbl 0112.10302, MR 0123375
Reference: [22] Kotz, S., Balakrishnan, N., Johnson, N. L.: Continuous Multivariate Distributions. Vol. 1: Models and Applications.Wiley, New York (2000). Zbl 0946.62001, MR 1788152, 10.1002/0471722065
Reference: [23] Kullback, S., Leibler, R. A.: On information and sufficiency.Ann. Math. Stat. 22 (1951), 79-86. Zbl 0042.38403, MR 0039968, 10.1214/aoms/1177729694
Reference: [24] Kundu, C., Crescenzo, A. Di, Longobardi, M.: On cumulative residual (past) inaccuracy for truncated random variables.Metrika 79 (2016), 335-356. Zbl 1333.94025, MR 3473632, 10.1007/s00184-015-0557-5
Reference: [25] Kundu, A., Kundu, C.: Bivariate extension of (dynamic) cumulative past entropy.Commun. Stat., Theory Methods 46 (2017), 4163-4180. Zbl 1368.62012, MR 3599701, 10.1080/03610926.2015.1080838
Reference: [26] Kundu, A., Kundu, C.: Bivariate extension of generalized cumulative past entropy.Commun. Stat., Theory Methods 47 (2018), 1962-1977. MR 3757723, 10.1080/03610926.2017.1335412
Reference: [27] Kundu, A., Nanda, A. K.: On study of dynamic survival and cumulative past entropies.Commun. Stat., Theory Methods 45 (2016), 104-122. Zbl 1338.60055, MR 3440373, 10.1080/03610926.2013.824591
Reference: [28] Lawless, J. F.: Statistical Models and Methods for Lifetime Data.Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York (1982). Zbl 0541.62081, MR 0640866
Reference: [29] Nair, N. U., Asha, G.: Some characterizations based on bivariate reversed mean residual life.ProbStat Forum 1 (2008), 1-14. Zbl 05633231
Reference: [30] Nath, P.: Inaccuracy and coding theory.Metrika 13 (1968), 123-135. Zbl 0162.51101, MR 0238439, 10.1007/BF02613380
Reference: [31] Navarro, J., Aguila, Y. del, Asadi, M.: Some new results on the cumulative residual entropy.J. Stat. Plann. Inference 140 (2010), 310-322. Zbl 1177.62005, MR 2568141, 10.1016/j.jspi.2009.07.015
Reference: [32] Navarro, J., Sunoj, S. M., Linu, N. N.: Characterizations of bivariate models using some dynamic conditional information divergence measures.Commun. Stat., Theory Methods 43 (2014), 1939-1948. Zbl 06302741, MR 3196235, 10.1080/03610926.2012.677925
Reference: [33] Park, S., Kim, I.: On cumulative residual entropy of order statistics.Stat. Probab. Lett. 94 (2014), 170-175. Zbl 1301.62047, MR 3257376, 10.1016/j.spl.2014.07.020
Reference: [34] Park, S., Rao, M., Shin, D. W.: On cumulative residual Kullback-Leibler information.Stat. Probab. Lett. 82 (2012), 2025-2032. Zbl 1312.62012, MR 2970308, 10.1016/j.spl.2012.06.015
Reference: [35] Psarrakos, G., Toomaj, A.: On the generalized cumulative residual entropy with applications in actuarial science.J. Comput. Appl. Math. 309 (2017), 186-199. Zbl 06626242, MR 3539777, 10.1016/j.cam.2016.06.037
Reference: [36] Rao, M., Chen, Y., Vemuri, B. C., Wang, F.: Cumulative residual entropy: a new measure of information.IEEE Trans. Inf. Theory 50 (2004), 1220-1228. Zbl 1302.94025, MR 2094878, 10.1109/TIT.2004.828057
Reference: [37] Rényi, A.: On measures of entropy and information.Proc. 4th Berkeley Symp. Math. Stat. Probab. 1 Univ. California Press, Berkeley (1961), 547-561. Zbl 0106.33001, MR 0132570
Reference: [38] Roy, D.: A characterization of model approach for generating bivariate life distributions using reversed hazard rates.J. Jpn. Stat. Soc. 32 (2002), 239-245. Zbl 1047.62050, MR 1960368, 10.14490/jjss.32.239
Reference: [39] Sankaran, P. G., Kundu, D.: A bivariate Pareto model.Statistics 48 (2014), 241-255. Zbl 1367.62282, MR 3175768, 10.1080/02331888.2012.719521
Reference: [40] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics, Springer, New York (2007). Zbl 1111.62016, MR 2265633, 10.1007/978-0-387-34675-5
Reference: [41] Shannon, C. E.: A mathematical theory of communication.Bell Syst. Tech. J. 27 (1948), 379-423, 623-656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [42] Shi, J., Cai, Y., Zhu, J., Zhong, J., Wang, F.: SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine.Medical & Biological Engineering & Computing 51 (2013), 417-427. 10.1007/s11517-012-1010-9
Reference: [43] Sunoj, S. M., Linu, M. N.: Dynamic cumulative residual Rényi's entropy.Statistics 46 (2012), 41-56. Zbl 1307.62240, MR 2889011, 10.1080/02331888.2010.494730
Reference: [44] Toomaj, A., Sunoj, S. M., Navarro, J.: Some properties of the cumulative residual entropy of coherent and mixed systems.J. Appl. Probab. 54 (2017), 379-393. MR 3668472, 10.1017/jpr.2017.6
Reference: [45] Wang, F., Vemuri, B. C., Rao, M., Chen, Y.: A new & robust information theoretic measure and its application to image alignment.Information Processing in Medical Imaging C. Taylor, J. A. Noble Lecture Notes in Computer Science 2732, Springer, Berlin (2003), 388-400. 10.1007/978-3-540-45087-0_33
.

Files

Files Size Format View
AplMat_63-2018-2_5.pdf 540.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo