[1] Anh, B. T., Duong, X. T.:
Weighted Hardy spaces associated to operators and boundedness of singular integrals. Available at
https://arxiv.org/abs/1202.2063
[2] Auscher, P.:
On necessary and sufficient conditions for $L^p$-estimates of Riesz transforms associated to elliptic operators on $\mathbb{R}^n$ and related estimates. Mem. Am. Math. Soc. 186 (2007), 75 pages.
DOI 10.1090/memo/0871 |
MR 2292385 |
Zbl 1221.42022
[3] Auscher, P., Duong, X. T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished preprint (2005).
[10] Carleson, L.: A counterexample for measures bounded on $H^p$ for the bi-disc. Mittag Leffler Report 7 (1974).
[15] Deng, D., Song, L., Tan, C., Yan, L.:
Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains. J. Geom. Anal. 17 (2007), 455-483.
DOI 10.1007/BF02922092 |
MR 2359975 |
Zbl 1146.42003
[24] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.:
Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214 (2011), 78 pages.
DOI 10.1090/S0065-9266-2011-00624-6 |
MR 2868142 |
Zbl 1232.42018
[33] Martell, J. M., Prisuelos-Arribas, C.:
Weighted Hardy spaces associated with elliptic operators I: Weighted norm inequalities for conical square functions. Trans. Am. Math. Soc. 369 (2017), 4193-4233.
DOI 10.1090/tran/6768 |
MR 3624406 |
Zbl 06698812
[40] Stein, E. M.:
Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Mathematical Series 43, Princeton University Press, Princeton (1993).
MR 1232192 |
Zbl 0821.42001
[42] Zhu, X. X.:
Atomic decomposition for weighted $H^p$ spaces on product domains. Sci. China, Ser. A 35 (1992), 158-168.
MR 1183454 |
Zbl 0801.46062