Title:
|
The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces (English) |
Author:
|
Liu, Suying |
Author:
|
Yang, Minghua |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
415-431 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $L$ be a non-negative self-adjoint operator acting on $L^2({\mathbb R}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on ${\mathbb R}^n\times {\mathbb R}^n$, $1<r<\infty $. In this article we obtain a weighted atomic decomposition for the weighted Hardy space $H^{p}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$, $0<p\leq 1$ associated to $L$. Based on the atomic decomposition, we show the dual relationship between $H^{1}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$ and ${\rm BMO}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$. (English) |
Keyword:
|
weighted Hardy space |
Keyword:
|
operator |
Keyword:
|
Gaussian estimate |
Keyword:
|
duality |
Keyword:
|
product space |
MSC:
|
42B30 |
MSC:
|
42B35 |
MSC:
|
47F05 |
idZBL:
|
Zbl 06890380 |
idMR:
|
MR3819181 |
DOI:
|
10.21136/CMJ.2018.0469-16 |
. |
Date available:
|
2018-06-11T10:53:43Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147226 |
. |
Reference:
|
[1] Anh, B. T., Duong, X. T.: Weighted Hardy spaces associated to operators and boundedness of singular integrals.Available at https://arxiv.org/abs/1202.2063. |
Reference:
|
[2] Auscher, P.: On necessary and sufficient conditions for $L^p$-estimates of Riesz transforms associated to elliptic operators on $\mathbb{R}^n$ and related estimates.Mem. Am. Math. Soc. 186 (2007), 75 pages. Zbl 1221.42022, MR 2292385, 10.1090/memo/0871 |
Reference:
|
[3] Auscher, P., Duong, X. T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces.Unpublished preprint (2005). |
Reference:
|
[4] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators I: General operator theory and weights.Adv. Math. 212 (2007), 225-276. Zbl 1213.42030, MR 2319768, 10.1016/j.aim.2006.10.002 |
Reference:
|
[5] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators II: Off-diagonal estimates on spaces of homogeneous type.J. Evol. Equ. 7 (2007), 265-316. Zbl 1210.42023, MR 2316480, 10.1007/s00028-007-0288-9 |
Reference:
|
[6] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators III: Harmonic analysis of elliptic operators.J. Funct. Anal. 241 (2006), 703-746. Zbl 1213.42029, MR 2271934, 10.1016/j.jfa.2006.07.008 |
Reference:
|
[7] Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds.J. Geom. Anal. 18 (2008), 192-248. Zbl 1217.42043, MR 2365673, 10.1007/s12220-007-9003-x |
Reference:
|
[8] Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic product Hardy spaces and boundedness of sublinear operators.Math. Nachr. 283 (2010), 392-442. Zbl 1205.42021, MR 2643020, 10.1002/mana.200910078 |
Reference:
|
[9] Bui, H.-Q., Duong, X. T., Yan, L.: Calderón reproducing formulas and new Besov spaces associated with operators.Adv. Math. 229 (2012), 2449-2502. Zbl 1241.46020, MR 2880229, 10.1016/j.aim.2012.01.005 |
Reference:
|
[10] Carleson, L.: A counterexample for measures bounded on $H^p$ for the bi-disc.Mittag Leffler Report 7 (1974). |
Reference:
|
[11] Chang, S.-Y. A., Fefferman, R.: A continuous version of duality $H^1$ with BMO on the bidisc.Ann. Math. (2) 112 (1980), 179-201. Zbl 0451.42014, MR 0584078, 10.2307/1971324 |
Reference:
|
[12] Chang, S.-Y. A., Fefferman, R.: The Calderón-Zygmund decomposition on product domains.Am. J. Math. 104 (1982), 445-468. Zbl 0513.42019, MR 0658542, 10.2307/2374150 |
Reference:
|
[13] Chang, S.-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and $H^p$-theory on product domains.Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. Zbl 0557.42007, MR 0766959, 10.1090/S0273-0979-1985-15291-7 |
Reference:
|
[14] Davies, E. B.: Heat Kernels and Spectral Theory.Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge (1989). Zbl 0699.35006, MR 0990239, 10.1017/CBO9780511566158 |
Reference:
|
[15] Deng, D., Song, L., Tan, C., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains.J. Geom. Anal. 17 (2007), 455-483. Zbl 1146.42003, MR 2359975, 10.1007/BF02922092 |
Reference:
|
[16] Duong, X. T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus.J. Funct. Anal. 264 (2013), 1409-1437. Zbl 1271.42033, MR 3017269, 10.1016/j.jfa.2013.01.006 |
Reference:
|
[17] Duong, X. T., MacIntosh, A.: Singular integral operators with non-smooth kernels on irregular domains.Rev. Mat. Iberoam. 15 (1999), 233-265. Zbl 0980.42007, MR 1715407, 10.4171/RMI/255 |
Reference:
|
[18] Duong, X. T., Ouhabaz, E. M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers.J. Funct. Anal. 196 (2002), 443-485. Zbl 1029.43006, MR 1943098, 10.1016/S0022-1236(02)00009-5 |
Reference:
|
[19] Duong, X. T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds.J. Fourier Anal. Appl. 13 (2007), 87-111. Zbl 1133.42017, MR 2296729, 10.1007/s00041-006-6057-2 |
Reference:
|
[20] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds.J. Am. Math. Soc. 18 (2005), 943-973. Zbl 1078.42013, MR 2163867, 10.1090/S0894-0347-05-00496-0 |
Reference:
|
[21] Fefferman, R.: $A_p$ weights and singular integrals.Am. J. Math. 110 (1988), 975-987. Zbl 0665.42020, MR 0961502, 10.2307/2374700 |
Reference:
|
[22] García-Cuerva, J., Francia, J. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). Zbl 0578.46046, MR 0807149, 10.1016/s0304-0208(08)x7154-3 |
Reference:
|
[23] Gundy, R. F., Stein, E. M.: $H^p$ theory for the poly-disc.Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. Zbl 0405.32002, MR 0524328, 10.1073/pnas.76.3.1026 |
Reference:
|
[24] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates.Mem. Am. Math. Soc. 214 (2011), 78 pages. Zbl 1232.42018, MR 2868142, 10.1090/S0065-9266-2011-00624-6 |
Reference:
|
[25] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators.Math. Ann. 344 (2009), 37-116. Zbl 1162.42012, MR 2481054, 10.1007/s00208-008-0295-3 |
Reference:
|
[26] Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators.J. Funct. Anal. 258 (2010), 1167-1224. Zbl 1205.46014, MR 2565837, 10.1016/j.jfa.2009.10.018 |
Reference:
|
[27] Journé, J.-L.: Calderón-Zygmund operators on product spaces.Rev. Mat. Iberoam. 1 (1985), 55-91. Zbl 0634.42015, MR 0836284, 10.4171/RMI/15 |
Reference:
|
[28] Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces.Trans. Am. Math. Soc. 367 (2015), 121-189. Zbl 1321.58017, MR 3271256, 10.1090/S0002-9947-2014-05993-X |
Reference:
|
[29] Krug, D.: A weighted version of the atomic decomposition for $H^p$ (bi-halfspace).Indian Univ. Math. J. 37 (1988), 277-300. Zbl 0635.46048, MR 0963503, 10.1512/iumj.1988.37.37014 |
Reference:
|
[30] Krug, D., Torchinsky, A.: A weighted version of Journé's lemma.Rev. Math. Iberoam. 10 (1994), 363-378. Zbl 0819.42009, MR 1286479, 10.4171/RMI/155 |
Reference:
|
[31] Liu, S., Song, L.: An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators.J. Funct. Anal. 265 (2013), 2709-2723. Zbl 1285.42019, MR 3096987, 10.1016/j.jfa.2013.08.003 |
Reference:
|
[32] Liu, S., Song, L.: The atomic decomposition of weighted Hardy spaces associated to self-adjoint operators on product spaces.J. Math. Anal. Appl. 443 (2016), 92-115. Zbl 1341.42034, MR 3508481, 10.1016/j.jmaa.2016.05.021 |
Reference:
|
[33] Martell, J. M., Prisuelos-Arribas, C.: Weighted Hardy spaces associated with elliptic operators I: Weighted norm inequalities for conical square functions.Trans. Am. Math. Soc. 369 (2017), 4193-4233. Zbl 06698812, MR 3624406, 10.1090/tran/6768 |
Reference:
|
[34] Martell, J. M., Prisuelos-Arribas, C.: Weighted Hardy spaces associated with elliptic operators. Part II: Characterizations of $H^1_L(w)$.Available at\ https://arxiv.org/abs/1701.00920. MR 3624406 |
Reference:
|
[35] Ouhabaz, E. M.: Analysis of Heat Equations on Domains.London Mathematical Society Monographs Series 31, Princeton University Press, Princeton (2005). Zbl 1082.35003, MR 2124040, 10.1515/9781400826483 |
Reference:
|
[36] Sato, S.: Weighted inequalities on product domains.Stud. Math. 92 (1989), 59-72. Zbl 0667.42008, MR 0984850, 10.4064/sm-92-1-59-72 |
Reference:
|
[37] Song, L., Tan, C., Yan, L.: An atomic decomposition for Hardy spaces associated to Schrödinger operators.J. Aust. Math. Soc. 91 (2011), 125-144. Zbl 1238.42007, MR 2844951, 10.1017/S1446788711001376 |
Reference:
|
[38] Song, L., Xiao, J., Yan, L.: Preduals of quadratic Campanato spaces associated to operators with heat kernel bounds.Potential Anal. 41 (2014), 849-867. Zbl 1308.42024, MR 3264823, 10.1007/s11118-014-9396-7 |
Reference:
|
[39] Song, L., Yan, L.: Riesz transforms associated to Schrödinger operators on weighted Hardy spaces.J. Funct. Anal. 259 (2010), 1466-1490. Zbl 1202.35072, MR 2659768, 10.1016/j.jfa.2010.05.015 |
Reference:
|
[40] Stein, E. M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals.Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). Zbl 0821.42001, MR 1232192 |
Reference:
|
[41] Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces.Lecture Notes in Mathematics 1381, Springer, Berlin (1989). Zbl 0676.42021, MR 1011673, 10.1007/BFb0091154 |
Reference:
|
[42] Zhu, X. X.: Atomic decomposition for weighted $H^p$ spaces on product domains.Sci. China, Ser. A 35 (1992), 158-168. Zbl 0801.46062, MR 1183454 |
. |