Title:
|
The small Ree group $^{2}G_{2}(3^{2n+1})$ and related graph (English) |
Author:
|
Asboei, Alireza K. |
Author:
|
Amiri, Seyed S. S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
3 |
Year:
|
2018 |
Pages:
|
271-276 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group. The main supergraph $\mathcal{S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong ^{2}G_{2}(3^{2n+1})$ if and only if $\mathcal{S}(G)\cong \mathcal{S}(^{2}G_{2}(3^{2n+1}))$. As a main consequence of our result we conclude that Thompson's problem is true for the small Ree group $^{2}G_{2}(3^{2n+1})$. (English) |
Keyword:
|
main supergraph |
Keyword:
|
simple Ree group |
Keyword:
|
Thompson's problem |
MSC:
|
05C25 |
MSC:
|
20D08 |
idZBL:
|
Zbl 06940869 |
idMR:
|
MR3861551 |
DOI:
|
10.14712/1213-7243.2015.255 |
. |
Date available:
|
2018-09-10T12:06:11Z |
Last updated:
|
2020-10-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147395 |
. |
Reference:
|
[1] Asboei A. K., Amiri S. S. S.: Some alternating and symmetric groups and related graphs.Beitr. Algebra Geom. 59 (2018), no. 1, 21–24. MR 3761396, 10.1007/s13366-017-0360-8 |
Reference:
|
[2] Asboei A. K., Amiri S. S. S.: Some results on the main supergraph of finite groups.accepted in Algebra Discrete Math. |
Reference:
|
[3] Cameron P. J.: The power graph of a finite group II.J. Group Theory 13 (2010), no. 6, 779–783. MR 2736156, 10.1515/jgt.2010.023 |
Reference:
|
[4] Chakrabarty I., Ghosh S., Sen M. K.: Undirected power graphs of semigroups.Semigroup Forum 78 (2009), no. 3, 410–426. MR 2511776, 10.1007/s00233-008-9132-y |
Reference:
|
[5] Chen G. Y.: On structure of Frobenius group and $2$-Frobenius group.J. Southwest China Normal Univ. 20 (1995), no. 5, 485–487 (Chinese). |
Reference:
|
[6] Ebrahimzadeh B., Iranmanesh A., Parvizi Mosaed H.: A new characterization of Ree group $^{2}G_2(q)$ by the order of group and the number of elements.Int. J. Group Theory 6 (2017), no. 4, 1–6. MR 3695074 |
Reference:
|
[7] Frobenius G.: Verallgemeinerung des Sylow'schen Satzes.Berl. Ber. (1895), 981–993 (German). |
Reference:
|
[8] Hamzeh A., Ashrafi A. R.: Automorphism groups of supergraphs of the power graph of a finite group.European J. Combin. 60 (2017), 82–88. MR 3567537, 10.1016/j.ejc.2016.09.005 |
Reference:
|
[9] Mazurov V. D., Khukhro E. I.: Unsolved Problems in Group Theory.Kourovka Notebook, Novosibirsk, Inst. Mat. Sibirsk. Otdel. Akad., 2006. MR 2263886 |
Reference:
|
[10] Shi W.-J.: A characterization of $U_{3}(2^{n})$ by their element orders.Xinan Shifan Daxue Xuebao Ziran Kexue Ban 25 (2000), no. 4, 353–360. MR 1784865 |
Reference:
|
[11] Ward H. N.: On Ree's series of simple groups.Trans. Amer. Math. Soc. 121 (1966), 62–89. MR 0197587 |
Reference:
|
[12] Weisner L.: On the number of elements of a group which have a power in a given conjugate set.Bull. Amer. Math. Soc. 31 (1925), no. 9–10, 492–496. MR 1561103, 10.1090/S0002-9904-1925-04087-2 |
Reference:
|
[13] Williams J. S.: Prime graph components of finite groups.J. Algebra 69 (1981), no. 2, 487–513. Zbl 0471.20013, MR 0617092, 10.1016/0021-8693(81)90218-0 |
Reference:
|
[14] Wilson R. A.: The Finite Simple Groups.Graduate Texts in Mathematics, 251, Springer, London, 2009. MR 2562037, 10.1007/978-1-84800-988-2 |
Reference:
|
[15] Zhang Q., Shi W., Shen R.: Quasirecognition by prime graph of the simple groups $G_{2}(q)$ and $^{2}B_{2}(q)$.J. Algebra Appl. 10 (2011), no. 2, 309–317. MR 2795740, 10.1142/S0219498811004598 |
. |