Full entry | *Fulltext not available
(moving wall
24 months)
*
Feedback

arc graph; chromatic number; free distributive lattice; Dedekind number

References:

[1] Dilworth R. P.: **A decomposition theorem for partially ordered sets**. Ann. of Math. (2) 51 (1950), 161–166. DOI 10.2307/1969503 | MR 0032578

[2] Foniok J., Tardif C.: **Digraph functors which admit both left and right adjoints**. Discrete Math. 338 (2015), no. 4, 527–535. DOI 10.1016/j.disc.2014.10.018 | MR 3300740

[3] Harner C. C., Entringer R. C.: **Arc colorings of digraphs**. J. Combinatorial Theory Ser. B 13 (1972), 219–225. DOI 10.1016/0095-8956(72)90057-3 | MR 0313101

[4] Hell P., Nešetřil J.: **Graphs and Homomorphisms**. Oxford Lecture Series in Mathematics and Its Applications, 28, Oxford University Press, Oxford, 2004. MR 2089014

[5] Markowsky G.: **The level polynomials of the free distributive lattices**. Discrete Math. 29 (1980), no. 3, 275–285. DOI 10.1016/0012-365X(80)90156-9 | MR 0560771

[6] McHard R. W.: **Sperner Properties of the Ideals of a Boolean Lattice**. Ph.D. Thesis, University of California, Riverside, 2009. MR 2718021

[7] Poljak S.: **Coloring digraphs by iterated antichains**. Comment. Math. Univ. Carolin. 32 (1991), no. 2, 209–212. MR 1137780

[8] Poljak S., Rödl V.: **On the arc-chromatic number of a digraph**. J. Combin. Theory Ser. B 31 (1981), no. 2, 190–198. DOI 10.1016/S0095-8956(81)80024-X | MR 0630982