Previous |  Up |  Next

Article

Title: On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones (English)
Author: Shamoyan, Romi F.
Author: Mihić, Olivera
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 1033-1050
Summary lang: English
.
Category: math
.
Summary: We obtain new sharp embedding theorems for mixed-norm Herz-type analytic spaces in tubular domains over symmetric cones. These results enlarge the list of recent sharp theorems in analytic spaces obtained by Nana and Sehba (2015). (English)
Keyword: analytic function
Keyword: tubular domain
Keyword: embedding theorem
MSC: 42B15
MSC: 42B30
idZBL: Zbl 07031695
idMR: MR3881894
DOI: 10.21136/CMJ.2018.0059-17
.
Date available: 2018-12-07T06:20:42Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147519
.
Reference: [1] Abate, A., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains.J. Funct. Anal. 263 (2012), 3449-3491. Zbl 1269.32003, MR 2984073, 10.1016/j.jfa.2012.08.027
Reference: [2] Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains.J. Lond. Math. Soc., II. Ser. 83 (2011), 587-605. Zbl 1227.32008, MR 2802500, 10.1112/jlms/jdq092
Reference: [3] Bekolle, D., Bonami, A., Garrigos, G., Nana, C., Peloso, M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint.IMHOTEP J. Afr. Math. Pures Appl. 5 (2004), 75 pages. Zbl 1286.32001, MR 2244169
Reference: [4] Bekolle, D., Bonami, A., Garrigos, G., Ricci, F.: Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains.Proc. Lond. Math. Soc., III. Ser. 89 (2004), 317-360. Zbl 1079.42015, MR 2078706, 10.1112/S0024611504014765
Reference: [5] Bekolle, D., Bonami, A., Garrigos, G., Ricci, F., Sehba, B.: Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones.J. Reine Angew. Math. 647 (2010), 25-56. Zbl 1243.42035, MR 2729357, 10.1515/CRELLE.2010.072
Reference: [6] Bekolle, D., Sehba, B., Tchoundja, E.: The Duren-Carleson theorem in tube domains over symmetric cones.Integral Equations Oper. Theory 86 (2016), 475-494. Zbl 1372.32011, MR 3578037, 10.1007/s00020-016-2336-8
Reference: [7] Carleson, L.: Interpolations by bounded analytic functions and the corona problem.Ann. Math. 76 (1962), 547-559. Zbl 0112.29702, MR 0141789, 10.2307/1970375
Reference: [8] Cima, J. A., Mercer, P. R.: Composition operators between Bergman spaces on convex domains in $\mathbb{C}^n$.J. Oper. Theory 33 (1995), 363-369. Zbl 0840.47025, MR 1354986
Reference: [9] Cima, J. A., Wogen, W. R.: A Carleson measure theorem for the Bergman space on the ball.J. Oper. Theory 7 (1982), 157-165. Zbl 0499.42011, MR 0650200
Reference: [10] Duren, P. L.: Extension of a theorem of Carleson.Bull. Am. Math. Soc. 75 (1969), 143-146. Zbl 0184.30503, MR 0241650, 10.1090/S0002-9904-1969-12181-6
Reference: [11] Gheorghe, L. G.: Interpolation of Besov spaces and applications.Matematiche 55 (2000), 29-42. Zbl 1009.46008, MR 1888995
Reference: [12] Hastings, W. W.: A Carleson measure theorem for Bergman spaces.Proc. Am. Math. Soc. 52 (1975), 237-241. Zbl 0296.31009, MR 0374886, 10.2307/2040137
Reference: [13] Kaptanoğlu, H. T.: Carleson measures for Besov spaces on the ball with applications.J. Funct. Anal. 250 (2007), 483-520. Zbl 1135.46014, MR 2352489, 10.1016/j.jfa.2006.12.016
Reference: [14] Li, S., Shamoyan, R.: On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball.Bull. Sci. Math. 134 (2010), 144-154. Zbl 1187.32003, MR 2592966, 10.1016/j.bulsci.2008.04.003
Reference: [15] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces.Proc. Am. Math. Soc. 87 (1983), 656-660. Zbl 0521.32005, MR 0687635, 10.2307/2043353
Reference: [16] Nana, C., Sehba, B. F.: Carleson embeddings and two operators on Bergman spaces of tube domains over symmetric cones.Integral Equations Oper. Theory 83 (2015), 151-178. Zbl 1326.32018, MR 3404692, 10.1007/s00020-014-2210-5
Reference: [17] Nana, C., Sehba, B.: Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones.Avaible at https://arxiv.org/abs/1508.05819. MR 3851374
Reference: [18] Oleĭnik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions.J. Sov. Math. 9 (1978), 228-243. Zbl 0396.31001, 10.1007/BF01578546
Reference: [19] Oleĭnik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions.J. Sov. Math. 2 (1974), 135-142. Zbl 0278.46032, MR 0369705, 10.1007/BF01099672
Reference: [20] Sehba, B. F.: Hankel operators on Bergman spaces of tube domains over symmetric cones.Integral Equations Oper. Theory 62 (2008), 233-245. Zbl 1198.47047, MR 2447916, 10.1007/s00020-008-1620-7
Reference: [21] Sehba, B. F.: Bergman-type operators in tubular domains over symmetric cones.Proc. Edinb. Math. Soc., II. Ser. 52 (2009), 529-544. Zbl 1168.42011, MR 2506404, 10.1017/S0013091506001593
Reference: [22] Shamoyan, R. F., Mihić, O. R.: On some new sharp embedding theorems in minimal and pseudoconvex domains.Czech. Math. J. 66 (2016), 527-546. Zbl 06604484, MR 3519619, 10.1007/s10587-016-0273-y
Reference: [23] Yamaji, S.: Composition operators on the Bergman spaces of a minimal bounded homogeneous domain.Hiroshima Math. J. 43 (2013), 107-127. Zbl 1304.47034, MR 3066527, 10.32917/hmj/1368217952
Reference: [24] Yamaji, S.: Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain.J. Math. Soc. Japan 64 (2013), 1101-1115. Zbl 1284.47025, MR 3127818, 10.2969/jmsj/06541101
Reference: [25] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226, Springer, New York (2005). Zbl 1067.32005, MR 2115155, 10.1007/0-387-27539-8
.

Files

Files Size Format View
CzechMathJ_68-2018-4_10.pdf 350.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo