Previous |  Up |  Next

Article

Title: Reconstructibility of Boolean control networks with time delays in states (English)
Author: Sun, Ping
Author: Zhang, Lijun
Author: Zhang, Kuize
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 1091-1104
Summary lang: English
.
Category: math
.
Summary: This paper deals with the reconstructibility of Boolean control networks (BCNs) with time delays in states. First, a survey on the semi-tensor product, weighted pair graph, constructed forest and finite automata is given. Second, by using the weighted pair graph, constructed forest and finite automata, an algorithm is designed to judge whether a Boolean control network with time delays in states is reconstructable or not under a mild assumption. Third, an algorithm is proposed to determine the current state. Finally, an illustrative example is given to show the effectiveness of the proposed method. (English)
Keyword: Boolean control network
Keyword: reconstructibility
Keyword: semi-tensor product of matrices
Keyword: weighted pair graph
Keyword: finite automaton
Keyword: formal language
MSC: 03D05
MSC: 05C22
MSC: 68Q45
MSC: 94C10
idZBL: Zbl 07031761
idMR: MR3893137
DOI: 10.14736/kyb-2018-5-1091
.
Date available: 2018-12-14T08:21:59Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147544
.
Reference: [1] Akutsu, T., Hayashida, M., Ching, W., Ng, M. K.: Control of Boolean networks: Hardness results and algorithms for tree structured networks..J. Theoret. Biology 244 (2007), 670-679. MR 2306355, 10.1016/j.jtbi.2006.09.023
Reference: [2] Bolotin, A.: Constructibility of the universal wave function..Foundat. Physics 46 (2016), 1-16. MR 3544893, 10.1007/s10701-016-0018-7
Reference: [3] Cheng, D.: On semi-tensor product of matrices and its applications..Acta Math. Appl. Sinica 19 (2003), 219-228. MR 2011484, 10.1007/s10255-003-0097-z
Reference: [4] Cheng, D.: Input-state approach to Boolean networks..IEEE Trans. Neural Networks. 20 (2009), 512-521. 10.1109/tnn.2008.2011359
Reference: [5] Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks..IEEE Trans. Automat. Control 55 (2010), 2251-2258. MR 2742217, 10.1109/tac.2010.2043294
Reference: [6] Cheng, D., Qi, H., Li, Z.: Realization of Boolean control networks..Automatica 46 (2010), 62-69. MR 2777196, 10.1016/j.automatica.2009.10.036
Reference: [7] Cheng, D., Qi, H., Li, Z.: Controllability and Observability of Boolean Control Networks..Springer-Verlag, London 2011.
Reference: [8] Cheng, D., Qi, H., Li, Z.: Analysis and Control of Boolean Networks..Springer-Verlag, London 2011. MR 2761796
Reference: [9] al., C. Farrow et: Scalar equations for synchronous Boolean networks with biological applications..IEEE Trans. Neural Networks 15 (2004), 348-354. 10.1109/tnn.2004.824262
Reference: [10] Fornasini, E., Valcher, M. E.: Observability, reconstructibility and state observers of Boolean control networks..IEEE Trans. Automat. Control 58 (2013), 1390-1401. MR 3065124, 10.1109/tac.2012.2231592
Reference: [11] Fornasini, E., Valcher, M. E.: Fault detection analysis of Boolean control networks..IEEE Trans. Automat. Control 60 (2015), 2734-2739. MR 3405989, 10.1109/tac.2015.2396646
Reference: [12] Haitao, L. I., Zhao, G., Meng, M., Feng, J.: A survey on applications of semi-tensor product method in engineering..Science China (Inform. Sci.) 61 (2018), 1, 010202. MR 3737404, 10.1007/s11432-017-9238-1
Reference: [13] Han, M., Liu, Y., Tu, Y.: Controllability of Boolean control networks with time delays both in states and inputs..Neurocomputing 129 (2014), 467-475. 10.1016/j.neucom.2013.09.012
Reference: [14] Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology..Ann. Rev. Genomics Hum. Genet. 2 (2001), 343-372. 10.1146/annurev.genom.2.1.343
Reference: [15] Kari, J.: A Lecture Note on Automata and Formal Languages..http://users.utu.fi/jkari/automata/, 2016.
Reference: [16] Kauffman, S. A.: Metabolic stability and epigenesis in randomly constructed genetic nets..J. Theoret. Biology 22 (1969), 437-467. MR 2436652, 10.1016/0022-5193(69)90015-0
Reference: [17] Khalil, H. K.: Nonlinear Systems..MacMillan, New York 1992. Zbl 1194.93083, MR 1201326
Reference: [18] Li, F., Sun, J., Wu, Q.: Observability of Boolean control networks with state time delays..IEEE Trans. Neural Networks 22 (2011), 948-954. 10.1109/tnn.2011.2126594
Reference: [19] Li, F., Sun, J., Wu, Q.: Observability of Boolean control networks with state time delays..IEEE Trans. Neural Networks 22 (2011), 948-954. 10.1109/tnn.2011.2126594
Reference: [20] Lu, J., Li, H., Liu, Y., Li, F.: Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems..IET Control Theory Appl. 11 (2017) 13, 2040-2047. MR 3727046, 10.1049/iet-cta.2016.1659
Reference: [21] Sui, H.: Regulation of Cellular states in mammalian cells from a genomewide view..In: Gene Regulations and Metabolism - Postgenomic Computational Approaches (J. Collado-Vides, ed.), MIT Press, MA 2002, pp. 181-220.
Reference: [22] Thomasian, A.: Reconstruct versus read-modify writes in RAID..Inform. Process. Lett. 93 (2005), 163-168. MR 2110605, 10.1016/j.ipl.2004.10.009
Reference: [23] Valmari, A.: On constructibility and unconstructibility of LTS operators from other LTS operators..Acta Inform. 52 (2015), 207-234. MR 3323586, 10.1007/s00236-015-0217-2
Reference: [24] Zhang, K., Zhang, L.: Observability of Boolean control networks: a unified approach based on the theories of finite automata..IEEE Trans. Automat. Control 61 (2015), 6854-6861. MR 3545104
Reference: [25] Zhang, L., Zhang, K.: Controllability and observability of Boolean control networks with time-variant delays in states..IEEE Trans. Neural Networks Learning Syst. 24 (2013), 1478-1484. MR 3110659, 10.1109/tnnls.2013.2246187
Reference: [26] Zhang, L., Zhang, K.: Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories..Science China (Inform. Sci.) 56 (2013), 1-12. MR 3110659, 10.1007/s11432-012-4651-2
Reference: [27] Zhang, K., Zhang, L.: Controllability of probabilistic Boolean control networks with time-variant delays in states..Science China (Inform. Sci.) 59 (2016), 092204:1-092204:10. MR 3544105, 10.1007/s11432-012-4651-2
Reference: [28] Zhang, K., Zhang, L., Su, R.: A weighted pair graph representation for reconstructibility of Boolean control networks..SIAM J. Control Optim. 54 (2016), 3040-3060. MR 3573305, 10.1137/140991285
Reference: [29] Zhao, Y., Qi, H., Cheng, D.: Input-state incidence matrix of Boolean control networks and its applications..Systems Control Lett. 59 (2010), 767-774. MR 2779787, 10.1016/j.sysconle.2010.09.002
.

Files

Files Size Format View
Kybernetika_54-2018-5_13.pdf 669.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo