Previous |  Up |  Next

Article

Title: Balcar's theorem on supports (English)
Author: Bukovský, Lev
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 4
Year: 2018
Pages: 443-449
Summary lang: English
.
Category: math
.
Summary: In A theorem on supports in the theory of semisets [Comment. Math. Univ. Carolinae 14 (1973), no. 1, 1--6] B. Balcar showed that if $\sigma\subseteq D\in M$ is a support, $M$ being an inner model of ZFC, and ${\mathcal P}(D\setminus \sigma)\cap M=r``\sigma$ with $r\in M$, then $r$ determines a preorder "$\preceq$" of $D$ such that $\sigma$ becomes a filter on $(D,\preceq)$ generic over $M$. We show that if the relation $r$ is replaced by a function ${\mathcal P}(D\setminus \sigma)\cap M=f_{-1}(\sigma)$, then there exists an equivalence relation "$\sim$" on $D$ and a partial order on $D/\sim\,$ such that $D/\sim\,$ is a complete Boolean algebra, $\sigma/\sim\,$ is a generic filter and $[f(u)]_{\sim}=-\sum (u/\sim)$ for any $u\subseteq D$, $u\in M$. (English)
Keyword: inner model
Keyword: support
Keyword: generic filter
MSC: 03E40
idZBL: Zbl 06997361
idMR: MR3914711
DOI: 10.14712/1213-7243.2015.266
.
Date available: 2018-12-28T15:06:58Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147549
.
Reference: [1] Balcar B.: A theorem on supports in the theory of semisets.Comment. Math. Univ. Carolinae 14 (1973), no. 1, 1–6. Zbl 0281.02060, MR 0340015
Reference: [2] Balcar B., Štěpánek P.: Set Theory.Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha, 2001 (Czech). MR 0911270
Reference: [3] Jech T.: Set Theory.The Third Millenium Edition, Springer Monographs in Mathematics, Springer, 2003. Zbl 1007.03002, MR 1940513
Reference: [4] Vopěnka P., Hájek P.: The Theory of Semisets.Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha, 1972. Zbl 0332.02064, MR 0444473
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-4_4.pdf 230.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo