Title:
|
Asymmetric tie-points and almost clopen subsets of $\mathbb {N}^*$ (English) |
Author:
|
Dow, Alan |
Author:
|
Shelah, Saharon |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
451-466 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A tie-point of compact space is analogous to a cut-point: the complement of the point falls apart into two relatively clopen non-compact subsets. We review some of the many consistency results that have depended on the construction of tie-points of $\mathbb N^*$. One especially important application, due to Veličković, was to the existence of nontrivial involutions on $\mathbb N^*$. A tie-point of $\mathbb N^*$ has been called symmetric if it is the unique fixed point of an involution. We define the notion of an almost clopen set to be the closure of one of the proper relatively clopen subsets of the complement of a tie-point. We explore asymmetries of almost clopen subsets of $\mathbb N^*$ in the sense of how may an almost clopen set differ from its natural complementary almost clopen set. (English) |
Keyword:
|
ultrafilter |
Keyword:
|
cardinal invariants of continuum |
MSC:
|
03E15 |
MSC:
|
54D80 |
idZBL:
|
Zbl 06997362 |
idMR:
|
MR3914712 |
DOI:
|
10.14712/1213-7243.2015.268 |
. |
Date available:
|
2018-12-28T15:08:53Z |
Last updated:
|
2021-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147550 |
. |
Reference:
|
[1] Baumgartner J. E.: Applications of the proper forcing axiom.Handbook of Set-theoretic Topology, North-Holland Publishing, Amsterdam, 1984, pages 913–959. MR 0776640 |
Reference:
|
[2] Blass A., Shelah S.: There may be simple $P_{\aleph_1}$- and $P_{\aleph_2}$-points and the Rudin-Keisler ordering may be downward directed.Ann. Pure Appl. Logic 33 (1987), no. 3, 213–243. MR 0879489, 10.1016/0168-0072(87)90082-0 |
Reference:
|
[3] van Douwen E. K., Kunen K., van Mill J.: There can be $C^*$-embedded dense proper subspaces in $\beta\omega-\omega$.Proc. Amer. Math. Soc. 105 (1989), no. 2, 462–470. MR 0977925 |
Reference:
|
[4] Dow A., Shelah S.: Tie-points and fixed-points in $\mathbb N^*$.Topology Appl. 155 (2008), no. 15, 1661–1671. MR 2437015, 10.1016/j.topol.2008.05.002 |
Reference:
|
[5] Dow A., Shelah S.: More on tie-points and homeomorphism in $\mathbb N^\ast$.Fund. Math. 203 (2009), no. 3, 191–210. MR 2506596, 10.4064/fm203-3-1 |
Reference:
|
[6] Dow A., Shelah S.: An Efimov space from Martin's axiom.Houston J. Math. 39 (2013), no. 4, 1423–1435. MR 3164725 |
Reference:
|
[7] Drewnowski L., Roberts J. W.: On the primariness of the Banach space $l_{\infty}/C_0$.Proc. Amer. Math. Soc. 112 (1991), no. 4, 949–957. MR 1004417 |
Reference:
|
[8] Farah I.: Analytic quotients: theory of liftings for quotients over analytic ideals on the integers.Mem. Amer. Math. Soc. 148 (2000), no. 702, 177 pages. Zbl 0966.03045, MR 1711328 |
Reference:
|
[9] Fine N. J., Gillman L.: Extension of continuous functions in $\beta N$.Bull. Amer. Math. Soc. 66 (1960), 376–381. MR 0123291, 10.1090/S0002-9904-1960-10460-0 |
Reference:
|
[10] Frankiewicz R., Zbierski P.: Strongly discrete subsets in $\omega^*$.Fund. Math. 129 (1988), no. 3, 173–180. MR 0962539, 10.4064/fm-129-3-173-180 |
Reference:
|
[11] Goldstern M., Shelah S.: Ramsey ultrafilters and the reaping number---$ Con({\mathfrak r}<{\mathfrak u})$.Ann. Pure Appl. Logic 49 (1990), no. 2, 121–142. MR 1077075, 10.1016/0168-0072(90)90063-8 |
Reference:
|
[12] Juhász I., Koszmider P., Soukup L.: A first countable, initially $\omega_1$-compact but non-compact space.Topology Appl. 156 (2009), no. 10, 1863–1879. MR 2519221, 10.1016/j.topol.2009.04.004 |
Reference:
|
[13] Just W.: Nowhere dense $P$-subsets of $\omega$.Proc. Amer. Math. Soc. 106 (1989), no. 4, 1145–1146. MR 0976360 |
Reference:
|
[14] Katětov M.: A theorem on mappings.Comment. Math. Univ. Carolinae 8 (1967), 431–433. MR 0229228 |
Reference:
|
[15] Koppelberg S.: Minimally generated Boolean algebras.Order 5 (1989), no. 4, 393–406. MR 1010388, 10.1007/BF00353658 |
Reference:
|
[16] Koszmider P.: Forcing minimal extensions of Boolean algebras.Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073–3117. Zbl 0922.03071, MR 1467471 |
Reference:
|
[17] Kunen K.: Set Theory. An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. Zbl 0534.03026, MR 0597342 |
Reference:
|
[18] Kunen K., Vaughan J. E., eds.: Handbook of Set-theoretic Topology.North-Holland Publishing, Amsterdam, 1984. MR 0776619 |
Reference:
|
[19] Leonard I. E., Whitfield J. H. M.: A classical Banach space: $l_{\infty }/c_{0}$.Rocky Mountain J. Math. 13 (1983), no. 3, 531–539. MR 0715776, 10.1216/RMJ-1983-13-3-531 |
Reference:
|
[20] Pearl E., ed.: Open Problems in Topology. II.Elsevier, Amsterdam, 2007. MR 2367385 |
Reference:
|
[21] Rabus M.: On strongly discrete subsets of $\omega^\ast$.Proc. Amer. Math. Soc. 118 (1993), no. 4, 1291–1300. MR 1181172 |
Reference:
|
[22] Rabus M.: An $\omega_2$-minimal Boolean algebra.Trans. Amer. Math. Soc. 348 (1996), no. 8, 3235–3244. MR 1357881 |
Reference:
|
[23] Šapirovskiĭ B. È.: The imbedding of extremally disconnected spaces in bicompacta. $b$-points and weight of pointwise normal spaces.Dokl. Akad. Nauk SSSR 223 (1975), no. 5, 1083–1086 (Russian). MR 0394609 |
Reference:
|
[24] Shelah S., Steprāns J.: PFA implies all automorphisms are trivial.Proc. Amer. Math. Soc. 104 (1988), no. 4, 1220–1225. MR 0935111, 10.1090/S0002-9939-1988-0935111-X |
Reference:
|
[25] Shelah S., Steprāns J.: Somewhere trivial autohomeomorphisms.J. London Math. Soc. (2) 49 (1994), no. 3, 569–580. MR 1271551, 10.1112/jlms/49.3.569 |
Reference:
|
[26] Steprāns J.: The autohomeomorphism group of the Čech-Stone compactification of the integers.Trans. Amer. Math. Soc. 355 (2003), no. 10, 4223–4240. MR 1990584, 10.1090/S0002-9947-03-03329-4 |
Reference:
|
[27] Veličković B.: $ OCA$ and automorphisms of ${\mathscr P }(\omega)/ fin$.Topology Appl. 49 (1993), no. 1, 1–13. MR 1202874, 10.1016/0166-8641(93)90127-Y |
. |