Previous |  Up |  Next

Article

Title: Asymmetric tie-points and almost clopen subsets of $\mathbb {N}^*$ (English)
Author: Dow, Alan
Author: Shelah, Saharon
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 4
Year: 2018
Pages: 451-466
Summary lang: English
.
Category: math
.
Summary: A tie-point of compact space is analogous to a cut-point: the complement of the point falls apart into two relatively clopen non-compact subsets. We review some of the many consistency results that have depended on the construction of tie-points of $\mathbb N^*$. One especially important application, due to Veličković, was to the existence of nontrivial involutions on $\mathbb N^*$. A tie-point of $\mathbb N^*$ has been called symmetric if it is the unique fixed point of an involution. We define the notion of an almost clopen set to be the closure of one of the proper relatively clopen subsets of the complement of a tie-point. We explore asymmetries of almost clopen subsets of $\mathbb N^*$ in the sense of how may an almost clopen set differ from its natural complementary almost clopen set. (English)
Keyword: ultrafilter
Keyword: cardinal invariants of continuum
MSC: 03E15
MSC: 54D80
idZBL: Zbl 06997362
idMR: MR3914712
DOI: 10.14712/1213-7243.2015.268
.
Date available: 2018-12-28T15:08:53Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147550
.
Reference: [1] Baumgartner J. E.: Applications of the proper forcing axiom.Handbook of Set-theoretic Topology, North-Holland Publishing, Amsterdam, 1984, pages 913–959. MR 0776640
Reference: [2] Blass A., Shelah S.: There may be simple $P_{\aleph_1}$- and $P_{\aleph_2}$-points and the Rudin-Keisler ordering may be downward directed.Ann. Pure Appl. Logic 33 (1987), no. 3, 213–243. MR 0879489, 10.1016/0168-0072(87)90082-0
Reference: [3] van Douwen E. K., Kunen K., van Mill J.: There can be $C^*$-embedded dense proper subspaces in $\beta\omega-\omega$.Proc. Amer. Math. Soc. 105 (1989), no. 2, 462–470. MR 0977925
Reference: [4] Dow A., Shelah S.: Tie-points and fixed-points in $\mathbb N^*$.Topology Appl. 155 (2008), no. 15, 1661–1671. MR 2437015, 10.1016/j.topol.2008.05.002
Reference: [5] Dow A., Shelah S.: More on tie-points and homeomorphism in $\mathbb N^\ast$.Fund. Math. 203 (2009), no. 3, 191–210. MR 2506596, 10.4064/fm203-3-1
Reference: [6] Dow A., Shelah S.: An Efimov space from Martin's axiom.Houston J. Math. 39 (2013), no. 4, 1423–1435. MR 3164725
Reference: [7] Drewnowski L., Roberts J. W.: On the primariness of the Banach space $l_{\infty}/C_0$.Proc. Amer. Math. Soc. 112 (1991), no. 4, 949–957. MR 1004417
Reference: [8] Farah I.: Analytic quotients: theory of liftings for quotients over analytic ideals on the integers.Mem. Amer. Math. Soc. 148 (2000), no. 702, 177 pages. Zbl 0966.03045, MR 1711328
Reference: [9] Fine N. J., Gillman L.: Extension of continuous functions in $\beta N$.Bull. Amer. Math. Soc. 66 (1960), 376–381. MR 0123291, 10.1090/S0002-9904-1960-10460-0
Reference: [10] Frankiewicz R., Zbierski P.: Strongly discrete subsets in $\omega^*$.Fund. Math. 129 (1988), no. 3, 173–180. MR 0962539, 10.4064/fm-129-3-173-180
Reference: [11] Goldstern M., Shelah S.: Ramsey ultrafilters and the reaping number---$ Con({\mathfrak r}<{\mathfrak u})$.Ann. Pure Appl. Logic 49 (1990), no. 2, 121–142. MR 1077075, 10.1016/0168-0072(90)90063-8
Reference: [12] Juhász I., Koszmider P., Soukup L.: A first countable, initially $\omega_1$-compact but non-compact space.Topology Appl. 156 (2009), no. 10, 1863–1879. MR 2519221, 10.1016/j.topol.2009.04.004
Reference: [13] Just W.: Nowhere dense $P$-subsets of $\omega$.Proc. Amer. Math. Soc. 106 (1989), no. 4, 1145–1146. MR 0976360
Reference: [14] Katětov M.: A theorem on mappings.Comment. Math. Univ. Carolinae 8 (1967), 431–433. MR 0229228
Reference: [15] Koppelberg S.: Minimally generated Boolean algebras.Order 5 (1989), no. 4, 393–406. MR 1010388, 10.1007/BF00353658
Reference: [16] Koszmider P.: Forcing minimal extensions of Boolean algebras.Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073–3117. Zbl 0922.03071, MR 1467471
Reference: [17] Kunen K.: Set Theory. An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. Zbl 0534.03026, MR 0597342
Reference: [18] Kunen K., Vaughan J. E., eds.: Handbook of Set-theoretic Topology.North-Holland Publishing, Amsterdam, 1984. MR 0776619
Reference: [19] Leonard I. E., Whitfield J. H. M.: A classical Banach space: $l_{\infty }/c_{0}$.Rocky Mountain J. Math. 13 (1983), no. 3, 531–539. MR 0715776, 10.1216/RMJ-1983-13-3-531
Reference: [20] Pearl E., ed.: Open Problems in Topology. II.Elsevier, Amsterdam, 2007. MR 2367385
Reference: [21] Rabus M.: On strongly discrete subsets of $\omega^\ast$.Proc. Amer. Math. Soc. 118 (1993), no. 4, 1291–1300. MR 1181172
Reference: [22] Rabus M.: An $\omega_2$-minimal Boolean algebra.Trans. Amer. Math. Soc. 348 (1996), no. 8, 3235–3244. MR 1357881
Reference: [23] Šapirovskiĭ B. È.: The imbedding of extremally disconnected spaces in bicompacta. $b$-points and weight of pointwise normal spaces.Dokl. Akad. Nauk SSSR 223 (1975), no. 5, 1083–1086 (Russian). MR 0394609
Reference: [24] Shelah S., Steprāns J.: PFA implies all automorphisms are trivial.Proc. Amer. Math. Soc. 104 (1988), no. 4, 1220–1225. MR 0935111, 10.1090/S0002-9939-1988-0935111-X
Reference: [25] Shelah S., Steprāns J.: Somewhere trivial autohomeomorphisms.J. London Math. Soc. (2) 49 (1994), no. 3, 569–580. MR 1271551, 10.1112/jlms/49.3.569
Reference: [26] Steprāns J.: The autohomeomorphism group of the Čech-Stone compactification of the integers.Trans. Amer. Math. Soc. 355 (2003), no. 10, 4223–4240. MR 1990584, 10.1090/S0002-9947-03-03329-4
Reference: [27] Veličković B.: $ OCA$ and automorphisms of ${\mathscr P }(\omega)/ fin$.Topology Appl. 49 (1993), no. 1, 1–13. MR 1202874, 10.1016/0166-8641(93)90127-Y
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-4_5.pdf 349.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo