Title:
|
Finitely-additive, countably-additive and internal probability measures (English) |
Author:
|
Duanmu, Haosui |
Author:
|
Weiss, William |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
467-485 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We discuss two ways to construct standard probability measures, called push-down measures, from internal probability measures. We show that the Wasserstein distance between an internal probability measure and its push-down measure is infinitesimal. As an application to standard probability theory, we show that every finitely-additive Borel probability measure $P$ on a separable metric space is a limit of a sequence of countably-additive Borel probability measures $\{P_n\}_{n\in \mathbb{N}}$ in the sense that $\int f \,{\rm d} P=\lim_{n\to \infty} \int f\, {\rm d} P_n$ for all bounded uniformly continuous real-valued function $f$ if and only if the space is totally bounded. (English) |
Keyword:
|
nonstandard model in mathematics |
Keyword:
|
nonstandard analysis |
Keyword:
|
nonstandard measure theory |
Keyword:
|
convergence of probability measures |
MSC:
|
03H05 |
MSC:
|
26E35 |
MSC:
|
28E05 |
MSC:
|
60B10 |
idZBL:
|
Zbl 06997363 |
idMR:
|
MR3914713 |
DOI:
|
10.14712/1213-7243.2015.270 |
. |
Date available:
|
2018-12-28T15:10:25Z |
Last updated:
|
2021-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147551 |
. |
Reference:
|
[1] Aldaz J. M.: Representation of Measures via the Standard Part Map.Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, 1991. MR 2687095 |
Reference:
|
[2] Aldaz J. M.: Representing abstract measures by Loeb measures: a generalization of the standard part map.Proc. Amer. Math. Soc. 123 (1995), no. 9, 2799–2808. MR 1260159, 10.1090/S0002-9939-1995-1260159-1 |
Reference:
|
[3] Anderson R. M.: Star-finite representations of measure spaces.Trans. Amer. Math. Soc. 271 (1982), no. 2, 667–687. MR 0654856, 10.1090/S0002-9947-1982-0654856-1 |
Reference:
|
[4] Anderson R. M., Rashid S.: A nonstandard characterization of weak convergence.Proc. Amer. Math. Soc. 69 (1978), no. 2, 327–332. MR 0480925, 10.1090/S0002-9939-1978-0480925-X |
Reference:
|
[5] Arkeryd L. O., Cutland N. J., Henson C. W., eds.: Nonstandard Analysis.Theory and Applications, Proc. of the NATO Advanced Study Institute on Nonstandard Analysis and Its Applications, Edinburgh, 1996, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 493, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1603229 |
Reference:
|
[6] Bhaskara R. K. P. S., Bhaskara R. M.: Theory of Charges.A study of finitely additive measures, Pure and Applied Mathematics, 109, Academic Press, Harcourt Brace Jovanovich Publishers, New York, 1983. MR 0751777 |
Reference:
|
[7] Cutland N. J., Neves V., Oliveira F., Sousa-Pinto J., eds.: Developments in Nonstandard Mathematics.Pitman Research Notes in Mathematics Series, 336, Papers from the Int. Col. (CIMNS94), Aveiro, 1994, Longman, Harlow, 1995. |
Reference:
|
[8] Duanmu H., Rosenthal J. S., Weiss W.: Ergodicity of Markov Processes via Non-standard Analysis.available at http://probability.ca/jeff/ftpdir/duanmu1.pdf. |
Reference:
|
[9] Duanmu H., Roy D. M.: On Extended Admissible Procedures and Their Nonstandard Bayes Risk.available at arXiv:1612.09305v2 [math.ST]. |
Reference:
|
[10] Kadane J. B., Schervish M. J., Seidenfeld T.: Statistical implications of finitely additive probability.Stud. Bayesian Econometrics Statist., 6, North-Holland, Amsterdam, 1986, pages 59–76. MR 0881427 |
Reference:
|
[11] Keisler H. J.: An infinitesimal approach to stochastic analysis.Mem. Amer. Math. Soc. 48 (1984), no. 297, 184 pages. Zbl 0529.60062, MR 0732752 |
Reference:
|
[12] Lindström T.: Pushing Down Loeb-Measures.Pure Mathematics: Preprint Series, Matematisk Institutt Universitetet i Oslo, Oslo, 1981. |
Reference:
|
[13] Loeb P. A.: Conversion from nonstandard to standard measure spaces and applications in probability theory.Trans. Amer. Math. Soc. 211 (1975), 113–122. Zbl 0312.28004, MR 0390154, 10.1090/S0002-9947-1975-0390154-8 |
Reference:
|
[14] McShane E. J.: Extension of range of functions.Bull. Amer. Math. Soc. 40 (1934), no. 12, 837–842. Zbl 0010.34606, MR 1562984, 10.1090/S0002-9904-1934-05978-0 |
Reference:
|
[15] Render H.: Pushing down Loeb measures.Math. Scand. 72 (1993), no. 1, 61–84. MR 1225997, 10.7146/math.scand.a-12437 |
Reference:
|
[16] Rosenthal J. S.: A First Look at Rigorous Probability Theory.World Scientific Publishing, Hackensack, 2006. MR 2279622 |
Reference:
|
[17] Ross D.: Compact measures have Loeb preimages.Proc. Amer. Math. Soc. 115 (1992), no. 2, 365–370. MR 1079898, 10.1090/S0002-9939-1992-1079898-8 |
Reference:
|
[18] Ross D. A.: Pushing down infinite Loeb measures.Math. Scand. 104 (2009), no. 1, 108–116. MR 2498374, 10.7146/math.scand.a-15087 |
Reference:
|
[19] Yosida K., Hewitt E.: Finitely additive measures.Trans. Amer. Math. Soc. 72 (1952), 46–66. MR 0045194, 10.1090/S0002-9947-1952-0045194-X |
. |