Previous |  Up |  Next

Article

Title: The nonexistence of universal metric flows (English)
Author: Geschke, Stefan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 4
Year: 2018
Pages: 487-493
Summary lang: English
.
Category: math
.
Summary: We consider dynamical systems of the form $(X,f)$ where $X$ is a compact metric space and $f\colon X\to X$ is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract $\omega$-limit sets, answering a question by Will Brian. (English)
Keyword: universal metric dynamical system
Keyword: minimal dynamical system
MSC: 37B05
MSC: 37B10
MSC: 54H20
idZBL: Zbl 06997364
idMR: MR3914714
DOI: 10.14712/1213-7243.2015.264
.
Date available: 2018-12-28T15:11:22Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147552
.
Reference: [1] Anderson R. D.: On raising flows and mappings.Bull. Amer. Math. Soc. 69 (1963), no. 2, 259–264. MR 0144324, 10.1090/S0002-9904-1963-10945-3
Reference: [2] Balcar B., Błaszczyk A.: On minimal dynamical systems on Boolean algebras.Comment. Math. Univ. Carolin. 31 (1990), no. 1, 7–11. MR 1056164
Reference: [3] Beleznay F., Foreman M.: The collection of distal flows is not Borel.Amer. J. Math. 117 (1995), no. 1, 203–239. MR 1314463, 10.2307/2375041
Reference: [4] Ben Yaacov I., Melleray J., Tsankov T.: Metrizable universal minimal flows of Polish groups have a comeagre orbit.Geom. Funct. Anal. 27 (2017), no. 1, 67–77. MR 3613453, 10.1007/s00039-017-0398-7
Reference: [5] Bowen R.: $\omega$-limit sets for axiom $A$ diffeomorphism.J. Differential Equations 18 (1975), 333–339. MR 0413181, 10.1016/0022-0396(75)90065-0
Reference: [6] Brian W.: Is there a universal $\omega$-limit set?.available at mathoverflow.net/questions/ 209634.
Reference: [7] Ellis R.: Lectures on Topological Dynamics.W. A. Benjamin, New York, 1969. Zbl 0193.51502, MR 0267561
Reference: [8] Furstenberg H.: The structure of distal flows.Amer. J. Math. 83 (1963), 477–515. MR 0157368, 10.2307/2373137
Reference: [9] Morse M., Hedlund G. A.: Symbolic dynamics II. Sturmian trajectories.Amer. J. Math. 62 (1940), no. 1, 1–42. MR 0000745, 10.2307/2371431
Reference: [10] Turek S.: A note on universal minimal dynamical systems.Comment. Math. Univ. Carolin. 32 (1991), no. 4, 781–783. MR 1159826
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-4_7.pdf 249.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo