Previous |  Up |  Next

Article

Keywords:
Selberg-Delange method; multiplicative function; arithmetic progressions
Summary:
We find, via the Selberg-Delange method, an asymptotic formula for the mean of arithmetic functions on certain APs. It generalizes a result due to Cui and Wu (2014).
References:
[1] Cui, Z., Wu, J.: The Selberg-Delange method in short intervals with an application. Acta Arith. 163 (2014), 247-260. DOI 10.4064/aa163-3-4 | MR 3206395 | Zbl 1303.11108
[2] Delange, H.: Sur des formules dues à Atle Selberg. Bull. Sci. Math., II. Ser. 83 French (1959), 101-111. MR 0113836 | Zbl 0106.03305
[3] Delange, H.: Sur des formules de Atle Selberg. Acta Arith. 19 French (1971), 105-146. DOI 10.4064/aa-19-2-105-146 | MR 0289432 | Zbl 0217.31902
[4] Gallagher, P. X.: Primes in progressions to prime-power modulus. Invent. Math. 16 (1972), 191-201. DOI 10.1007/BF01425492 | MR 0304327 | Zbl 0246.10030
[5] Hanrot, G., Tenenbaum, G., Wu, J.: Averages of certain multiplicative functions over friable integers. II. Proc. Lond. Math. Soc. (3) 96 French (2008), 107-135. DOI 10.1112/plms/pdm029 | MR 2392317 | Zbl 1195.11129
[6] Lau, Y.-K.: Summatory formula of the convolution of two arithmetical functions. Monatsh. Math. 136 (2002), 35-45. DOI 10.1007/s006050200032 | MR 1908079 | Zbl 1012.11089
[7] Lau, Y.-K., Wu, J.: Sums of some multiplicative functions over a special set of integers. Acta Arith. 101 (2002), 365-394. DOI 10.4064/aa101-4-5 | MR 1880049 | Zbl 0991.11050
[8] Pan, C. D., Pan, C. B.: Fundamentals of Analytic Number Theory. Science Press, Beijing (1991), Chinese. MR 2954332
[9] Selberg, A.: Note on a paper by L. G. Sathe. J. Indian Math. Soc., N. Ser. 18 (1954), 83-87. DOI 10.18311/jims/1954/17018 | MR 0067143 | Zbl 0057.28502
[10] Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies in Advanced Mathematics 46, Cambridge Univ. Press, Cambridge (1995). MR 1342300 | Zbl 0831.11001
[11] Tenenbaum, G., Wu, J.: Théorie analytique et probabiliste des nombres: 307 exercices corrigés. Belin, Paris (2014), French. MR 1397501
Partner of
EuDML logo