Previous |  Up |  Next

Article

Title: Sums of multiplicative function in special arithmetic progressions (English)
Author: Feng, Bin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 1-10
Summary lang: English
.
Category: math
.
Summary: We find, via the Selberg-Delange method, an asymptotic formula for the mean of arithmetic functions on certain APs. It generalizes a result due to Cui and Wu (2014). (English)
Keyword: Selberg-Delange method
Keyword: multiplicative function
Keyword: arithmetic progressions
MSC: 11N37
idZBL: Zbl 07088764
idMR: MR3923569
DOI: 10.21136/CMJ.2019.0079-16
.
Date available: 2019-03-08T14:53:22Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147610
.
Reference: [1] Cui, Z., Wu, J.: The Selberg-Delange method in short intervals with an application.Acta Arith. 163 (2014), 247-260. Zbl 1303.11108, MR 3206395, 10.4064/aa163-3-4
Reference: [2] Delange, H.: Sur des formules dues à Atle Selberg.Bull. Sci. Math., II. Ser. 83 French (1959), 101-111. Zbl 0106.03305, MR 0113836
Reference: [3] Delange, H.: Sur des formules de Atle Selberg.Acta Arith. 19 French (1971), 105-146. Zbl 0217.31902, MR 0289432, 10.4064/aa-19-2-105-146
Reference: [4] Gallagher, P. X.: Primes in progressions to prime-power modulus.Invent. Math. 16 (1972), 191-201. Zbl 0246.10030, MR 0304327, 10.1007/BF01425492
Reference: [5] Hanrot, G., Tenenbaum, G., Wu, J.: Averages of certain multiplicative functions over friable integers. II.Proc. Lond. Math. Soc. (3) 96 French (2008), 107-135. Zbl 1195.11129, MR 2392317, 10.1112/plms/pdm029
Reference: [6] Lau, Y.-K.: Summatory formula of the convolution of two arithmetical functions.Monatsh. Math. 136 (2002), 35-45. Zbl 1012.11089, MR 1908079, 10.1007/s006050200032
Reference: [7] Lau, Y.-K., Wu, J.: Sums of some multiplicative functions over a special set of integers.Acta Arith. 101 (2002), 365-394. Zbl 0991.11050, MR 1880049, 10.4064/aa101-4-5
Reference: [8] Pan, C. D., Pan, C. B.: Fundamentals of Analytic Number Theory.Science Press, Beijing (1991), Chinese. MR 2954332
Reference: [9] Selberg, A.: Note on a paper by L. G. Sathe.J. Indian Math. Soc., N. Ser. 18 (1954), 83-87. Zbl 0057.28502, MR 0067143, 10.18311/jims/1954/17018
Reference: [10] Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory.Cambridge Studies in Advanced Mathematics 46, Cambridge Univ. Press, Cambridge (1995). Zbl 0831.11001, MR 1342300
Reference: [11] Tenenbaum, G., Wu, J.: Théorie analytique et probabiliste des nombres: 307 exercices corrigés.Belin, Paris (2014), French. MR 1397501
.

Files

Files Size Format View
CzechMathJ_69-2019-1_1.pdf 277.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo