Previous |  Up |  Next

Article

Keywords:
finite group; $\sigma $-subnormal subgroup; $\sigma $-permutably embedded subgroup; \hbox {$\sigma $-soluble} group; supersoluble group
Summary:
Let $\sigma =\{\sigma _i\colon i\in I\}$ be some partition of the set of all primes $\mathbb {P}$, $G$ be a finite group and $\sigma (G)=\{\sigma _i\colon \sigma _i\cap \pi (G)\neq \emptyset \}$. A set $\mathcal {H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every non-identity member of $\mathcal {H}$ is a Hall $\sigma _i$-subgroup of $G$ and $\mathcal {H}$ contains exactly one Hall $\sigma _i$-subgroup of $G$ for every $\sigma _i\in \sigma (G)$. $G$ is said to be $\sigma $-full if $G$ possesses a complete Hall $\sigma $-set. A subgroup $H$ of $G$ is $\sigma $-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set $\mathcal {H}$ such that $HA^x$= $A^xH$ for all $A\in \mathcal {H}$ and all $x\in G$. A subgroup $H$ of $G$ is $\sigma $-permutably embedded in $G$ if $H$ is $\sigma $-full and for every $\sigma _i\in \sigma (H)$, every Hall $\sigma _i$-subgroup of $H$ is also a Hall $\sigma _i$-subgroup of some $\sigma $-permutable subgroup of $G$. \endgraf By using the $\sigma $-permutably embedded subgroups, we establish some new criteria for a group $G$ to be soluble and supersoluble, and also give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some known results are generalized.
References:
[1] Asaad, M.: On the solvability of finite groups. Arch. Math. 51 (1988), 289-293. DOI 10.1007/BF01194016 | MR 0964952 | Zbl 0656.20031
[2] Asaad, M.: On maximal subgroups of Sylow subgroups of finite groups. Commun. Algebra 26 (1998), 3647-3652. DOI 10.1080/00927879808826364 | MR 1647102 | Zbl 0915.20008
[3] Asaad, M., Heliel, A. A.: On $S$-quasinormally embedded subgroups of finite groups. J. Pure Appl. Algebra 165 (2001), 129-135. DOI 10.1016/S0022-4049(00)00183-3 | MR 1865961 | Zbl 1011.200190
[4] Asaad, M., Ramadan, M., Shaalan, A.: Influence of $\pi$-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group. Arch. Math. 56 (1991), 521-527. DOI 10.1007/BF01246766 | MR 1106492 | Zbl 0738.20026
[5] Ballester-Bolinches, A.: Permutably embedded subgroups of finite soluble groups. Arch. Math. 65 (1995), 1-7. DOI 10.1007/BF01196571 | MR 1336215 | Zbl 0823.20020
[6] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups. De Gruyter Expositions in Mathematics 53, Walter de Gruyter, Berlin (2010). MR 2762634 | Zbl 1206.20019
[7] Ballester-Bolinches, A., Pedraza-Aguilera, M. C.: On minimal subgroups of finite groups. Acta Math. Hung. 73 (1996), 335-342. DOI 10.1007/BF00052909 | MR 1428040 | Zbl 0930.20021
[8] Ballester-Bolinches, A., Pedraza-Aguilera, M. C.: Sufficient conditions for supersolubility of finite groups. J. Pure Appl. Algebra 127 (1998), 113-118. DOI 10.1016/S0022-4049(96)00172-7 | MR 1620696 | Zbl 0928.20020
[9] Bray, H. G., Deskins, W. E., Johnson, D., Humphreys, J. F., Puttaswamaiah, B. M., Venzke, P., Walls, G. L.: Between Nilpotent and Solvable. Polygonal Publ. House, Washington (1982). MR 0655785 | Zbl 0488.20001
[10] Buckley, J. T.: Finite groups whose minimal subgroups are normal. Math. Z. 116 (1970), 15-17. DOI 10.1007/BF01110184 | MR 0262359 | Zbl 0202.02303
[11] Chen, X., Guo, W., Skiba, A. N.: Some conditions under which a finite group belongs to a Baer-local formation. Commun. Algebra 42 (2014), 4188-4203. DOI 10.1080/00927872.2013.806519 | MR 3210366 | Zbl 1316.20013
[12] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). MR 1169099 | Zbl 0753.20001
[13] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). MR 0231903 | Zbl 0185.05701
[14] Guo, W.: The Theory of Classes of Groups. Mathematics and Its Applications 505, Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2000). DOI 10.1007/978-94-011-4054-6 | MR 1862683 | Zbl 1005.20016
[15] Guo, W.: Structure Theory for Canonical Classes of Finite Groups. Springer, Berlin (2015). DOI 10.1007/978-3-662-45747-4 | MR 3331254 | Zbl 1343.20021
[16] Guo, W., Cao, C., Skiba, A. N., Sinitsa, D. A.: Finite groups with $\mathcal{H}$-permutable subgroups. Commun. Math. Stat. 5 (2017), 83-92. DOI 10.1007/s40304-017-0101-1 | MR 3627596 | Zbl 1372.20026
[17] Guo, W., Skiba, A. N.: Finite groups with generalized Ore supplement conditions for primary subgroups. J. Algebra 432 (2015), 205-227. DOI 10.1016/j.jalgebra.2015.02.025 | MR 3334146 | Zbl 1329.20023
[18] Guo, W., Skiba, A. N.: Finite groups with permutable complete Wielandt sets of subgroups. J. Group Theory 18 (2015), 191-200. DOI 10.1515/jgth-2014-0045 | MR 3318533 | Zbl 1332.20020
[19] Guo, W., Skiba, A. N.: Groups with maximal subgroups of Sylow subgroups $\sigma$-permutably embedded. J. Group Theory 20 (2017), 169-183. DOI 10.1515/jgth-2016-0032 | MR 3592610 | Zbl 06718371
[20] Guo, W., Skiba, A. N.: On $\Pi$-quasinormal subgroups of finite groups. Monatsh. Math. 185 (2018), 443-453. DOI 10.1007/s00605-016-1007-9 | MR 3767728 | Zbl 06857731
[21] Huppert, B.: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin German (1967). DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[22] Huppert, B., Blackburn, N.: Finite groups III. Grundlehren der Mathematischen Wissenschaften 243, Springer, Berlin (1982). DOI 10.1007/978-3-642-67997-1 | MR 0662826 | Zbl 0514.20002
[23] Li, B.: On $\Pi$-property and $\Pi$-normality of subgroups of finite groups. J. Algebra 334 (2011), 321-337. DOI 10.1016/j.jalgebra.2010.12.018 | MR 2787667 | Zbl 1248.20020
[24] Li, Y., Wang, Y.: On $\pi$-quasinormally embedded subgroups of finite group. J. Algebra 281 (2004), 109-123. DOI 10.1016/j.jalgebra.2004.06.026 | MR 2091963 | Zbl 1079.20026
[25] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). MR 1292462 | Zbl 0843.20003
[26] Skiba, A. N.: On weakly $s$-permutable subgroups of finite groups. J. Algebra 315 (2007), 192-209. DOI 10.1016/j.jalgebra.2007.04.025 | MR 2344341 | Zbl 1130.20019
[27] Skiba, A. N.: On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups. J. Group Theory 13 (2010), 841-850. DOI 10.1515/JGT.2010.027 | MR 2736160 | Zbl 1205.20027
[28] Skiba, A. N.: A characterization of the hypercyclically embedded subgroups of finite groups. J. Pure Appl. Algebra 215 (2011), 257-261. DOI 10.1016/j.jpaa.2010.04.017 | MR 2729221 | Zbl 1206.20020
[29] Skiba, A. N.: On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups. J. Algebra 436 (2015), 1-16. DOI 10.1016/j.jalgebra.2015.04.010 | MR 3348466 | Zbl 1316.20020
[30] Skiba, A. N.: On some results in the theory of finite partially soluble groups. Commun. Math. Stat. 4 (2016), 281-309. DOI 10.1007/s40304-016-0088-z | MR 3554918 | Zbl 06722784
[31] Srinivasan, S.: Two sufficient conditions for supersolvability of finite groups. Isr. J. Math. 35 (1980), 210-214. DOI 10.1007/BF02761191 | MR 0576471 | Zbl 0437.20012
[32] Zhang, C., Wu, Z., Guo, W.: On weakly $\sigma$-permutable subgroups of finite groups. Pub. Math. Debrecen. 91 (2017), 489-502. DOI 10.5486/PMD.2017.7815 | MR 3744809
Partner of
EuDML logo