Previous |  Up |  Next

Article

Title: Cominimaxness of local cohomology modules (English)
Author: Aghapournahr, Moharram
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 75-86
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$. Let $t\in \mathbb {N}_0$ be an integer and $M$ an $R$-module such that ${\rm Ext}^i_R(R/I,M)$ is minimax for all $i\leq t+1$. We prove that if $H^{i}_{I}(M)$ is ${\rm FD}_{\leq 1}$ (or weakly Laskerian) for all $i<t$, then the $R$-modules $H^{i}_{I}(M)$ are $I$-cominimax for all $i<t$ and ${\rm Ext}^i_R(R/I,H^{t}_{I}(M))$ is minimax for $i=0,1$. Let $N$ be a finitely generated $R$-module. We prove that ${\rm Ext}^j_R(N,H^{i}_{I}(M))$ and ${\rm Tor}^R_{j}(N,H^{i}_I(M))$ are $I$-cominimax for all $i$ and $j$ whenever $M$ is minimax and $H^{i}_{I}(M)$ is ${\rm FD}_{\leq 1}$ (or weakly Laskerian) for all $i$. (English)
Keyword: local cohomology
Keyword: ${\rm FD}_{\leq n}$ modules
Keyword: cofinite modules
Keyword: cominimax modules
MSC: 13C05
MSC: 13D45
MSC: 13E10
idZBL: Zbl 07088770
idMR: MR3923575
DOI: 10.21136/CMJ.2018.0161-17
.
Date available: 2019-03-08T14:56:06Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147618
.
Reference: [1] Abbasi, A., Roshan-Shekalgourabi, H., Hassanzadeh-Lelekaami, D.: Some results on the local cohomology of minimax modules.Czech. Math. J. 64 (2014), 327-333. Zbl 1340.13009, MR MR3277739, 10.1007/s10587-014-0104-y
Reference: [2] Aghapournahr, M., Bahmanpour, K.: Cofiniteness of weakly Laskerian local cohomology modules.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57(105) (2014), 347-356. Zbl 1340.13010, MR 3288929
Reference: [3] Asadollahi, J., Khashyarmanesh, K., Salarian, S.: A generalization of the cofiniteness problem in local cohomology modules.J. Aust. Math. Soc. 75 (2003), 313-324. Zbl 1096.13522, MR 2015320, 10.1017/S1446788700008132
Reference: [4] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for $\frak a$-minimax modules.Proc. Amer. Math. Soc. 137 (2009), 439-448. Zbl 1157.13014, MR 2448562, 10.1090/S0002-9939-08-09530-0
Reference: [5] Bahmanpour, K.: On the category of weakly Laskerian cofinite modules.Math. Scand. 115 (2014), 62-68. Zbl 1306.13010, MR 3250048, 10.7146/math.scand.a-18002
Reference: [6] Bahmanpour, K.: Cohomological dimension, cofiniteness and Abelian categories of cofinite modules.J. Algebra 484 (2017), 168-197. Zbl 06732231, MR 3656717, 10.1016/j.jalgebra.2017.04.019
Reference: [7] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohomology modules.Proc. Am. Math. Soc. 136 (2008), 2359-2363. Zbl 1141.13014, MR 2390502, 10.1090/S0002-9939-08-09260-5
Reference: [8] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension.J. Algebra 321 (2009), 1997-2011. Zbl 1168.13016, MR 2494753, 10.1016/j.jalgebra.2008.12.020
Reference: [9] Bahmanpour, K., Naghipour, R., Sedghi, M.: Minimaxness and cofiniteness properties of local cohomology modules.Commun. Algebra 41 (2013), 2799-2814. Zbl 1273.13025, MR 3169421, 10.1080/00927872.2012.662709
Reference: [10] Bahmanpour, K., Naghipour, R., Sedghi, M.: On the category of cofinite modules which is Abelian.Proc. Am. Math. Soc. 142 (2014), 1101-1107. Zbl 1286.13017, MR 3162233, 10.1090/S0002-9939-2014-11836-3
Reference: [11] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [12] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). Zbl 0788.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [13] Delfino, D., Marley, T.: Cofinite modules and local cohomology.J. Pure Appl. Algebra 121 (1997), 45-52. Zbl 0893.13005, MR 1471123, 10.1016/S0022-4049(96)00044-8
Reference: [14] Dibaei, M. T., Yassemi, S.: Associated primes and cofiniteness of local cohomology modules.Manuscr. Math. 117 (2005), 199-205. Zbl 1105.13016, MR 2150481, 10.1007/s00229-005-0538-5
Reference: [15] Dibaei, M. T., Yassemi, S.: Associated primes of the local cohomology modules.Abelian Groups, Rings, Modules, and Homological Algebra P. Goeters, O. M. G. Jenda Lecture Notes in Pure and Applied Mathematics 249, Chapman & Hall/CRC, Boca Raton (2006), 51-58. Zbl 1124.13009, MR 2229101
Reference: [16] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules.Proc. Am. Math. Soc. 133 (2005), 655-660. Zbl 1103.13010, MR 2113911, 10.1090/S0002-9939-04-07728-7
Reference: [17] Enochs, E.: Flat covers and flat cotorsion modules.Proc. Am. Math. Soc. 92 (1984), 179-184. Zbl 0522.13008, MR 0754698, 10.2307/2045180
Reference: [18] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2).Advanced Studies in Pure Mathematics 2, North-Holland Publishing, Amsterdam (1968), French. Zbl 0197.47202, MR 0476737
Reference: [19] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554
Reference: [20] Hassanzadeh-Lelekaami, D., Roshan-Shekalgourabi, H.: Extension functors of cominimax modules.Commun. Algebra 45 (2017), 621-629. Zbl 1360.13044, MR 3562526, 10.1080/00927872.2016.1172613
Reference: [21] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. Zbl 0749.13007, MR 1120477, 10.1017/S0305004100070493
Reference: [22] Irani, Y.: Cominimaxness with respect to ideals of dimension one.Bull. Korean Math. Soc. 54 (2017), 289-298. Zbl 1359.13017, MR 3614578, 10.4134/BKMS.b160100
Reference: [23] Kawasaki, K.-I.: On a category of cofinite modules which is Abelian.Math. Z. 269 (2011), 587-608. Zbl 1228.13020, MR 2836085, 10.1007/s00209-010-0751-0
Reference: [24] Lorestani, K. B., Sahandi, P., Yassemi, S.: Artinian local cohomology modules.Can. Math. Bull. 50 (2007), 598-602. Zbl 1140.13016, MR 2364209, 10.4153/CMB-2007-058-8
Reference: [25] MacDonald, I. G.: Secondary representation of modules over a commutative ring.Symposia Mathematica 11 Academic Press, London (1973), 23-43. Zbl 0271.13001, MR 0342506
Reference: [26] Mafi, A.: On the local cohomology of minimax modules.Bull. Korean Math. Soc. 48 (2011), 1125-1128. Zbl 1232.13009, MR 2894880, 10.4134/BKMS.2011.48.6.1125
Reference: [27] Marley, T., Vassilev, J. C.: Cofiniteness and associated primes of local cohomology modules.J. Algebra 256 (2002), 180-193. Zbl 1042.13010, MR 1936885, 10.1016/S0021-8693(02)00151-5
Reference: [28] Matsumura, H.: Commutative Ring Theory.Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1968). Zbl 0603.13001, MR 0879273, 10.1017/CBO9781139171762
Reference: [29] Melkersson, L.: Properties of cofinite modules and applications to local cohomology.Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. Zbl 0921.13009, MR 1656785, 10.1017/S0305004198003041
Reference: [30] Melkersson, L.: Modules cofinite with respect to an ideal.J. Algebra 285 (2005), 649-668. Zbl 1093.13012, MR 2125457, 10.1016/j.jalgebra.2004.08.037
Reference: [31] Melkersson, L.: Cofiniteness with respect to ideals of dimension one.J. Algebra 372 (2012), 459-462. Zbl 1273.13029, MR 2990020, 10.1016/j.jalgebra.2012.10.005
Reference: [32] Quy, P. H.: On the finiteness of associated primes of local cohomology modules.Proc. Am. Math. Soc. 138 (2010), 1965-1968. Zbl 1190.13010, MR 2596030, 10.1090/S0002-9939-10-10235-4
Reference: [33] Schenzel, P.: Proregular sequences, local cohomology, and completion.Math. Scand. 92 (2003), 161-180. Zbl 1023.13011, MR 1973941, 10.7146/math.scand.a-14399
Reference: [34] Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one.Nagoya Math. J. 147 (1997), 179-191. Zbl 0899.13018, MR 1475172, 10.1017/S0027763000006371
Reference: [35] Yoshizawa, T.: Subcategories of extension modules by Serre subcategories.Proc. Am. Math. Soc. 140 (2012), 2293-2305. Zbl 1273.13018, MR 2898693, 10.1090/S0002-9939-2011-11108-0
Reference: [36] Zink, T.: Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring.Math. Nachr. 64 (1974), 239-252 German. Zbl 0297.13015, MR 0364223, 10.1002/mana.19740640114
Reference: [37] Zöschinger, H.: Minimax-Moduln.J. Algebra 102 (1986), 1-32 German. Zbl 0593.13012, MR 0853228, 10.1016/0021-8693(86)90125-0
.

Files

Files Size Format View
CzechMathJ_69-2019-1_7.pdf 312.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo