Previous |  Up |  Next

Article

Title: Note on strongly nil clean elements in rings (English)
Author: Kostić, Aleksandra
Author: Petrović, Zoran Z.
Author: Pucanović, Zoran S.
Author: Roslavcev, Maja
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 87-92
Summary lang: English
.
Category: math
.
Summary: Let $R$ be an associative unital ring and let $a\in R$ be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results. (English)
Keyword: nilpotent element
Keyword: nil clean element
MSC: 13B25
MSC: 15B33
MSC: 16U99
idZBL: Zbl 07088771
idMR: MR3923576
DOI: 10.21136/CMJ.2018.0167-17
.
Date available: 2019-03-08T14:56:32Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147619
.
Reference: [1] Chen, H.: Some strongly nil clean matrices over local rings.Bull. Korean Math. Soc. 48 (2011), 759-767. Zbl 1233.16022, MR 2848142, 10.4134/BKMS.2011.48.4.759
Reference: [2] Chen, H.: Strongly nil clean matrices over $R[x]/(x^2-1)$.Bull. Korean Math. Soc. 49 (2012), 589-599. Zbl 1248.15012, MR 2963422, 10.4134/BKMS.2012.49.3.589
Reference: [3] Chen, H.: On strongly nil clean matrices.Commun. Algebra 41 (2013), 1074-1086. Zbl 1286.16025, MR 3037180, 10.1080/00927872.2011.637265
Reference: [4] Chen, H., Sheibani, M.: On strongly nil clean rings.Commun. Algebra 45 (2017), 1719-1726. Zbl 06715289, MR 3576689, 10.1080/00927872.2016.1222411
Reference: [5] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [6] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element.Math. J. Okayama Univ. 30 (1988), 33-40. Zbl 0665.16016, MR 0976729
Reference: [7] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings.J. Pure Appl. Algebra 220 (2016), 633-646. Zbl 1335.16026, MR 3399382, 10.1016/j.jpaa.2015.07.009
Reference: [8] Šter, J.: Rings in which nilpotents form a subring.Carpathian J. Math. 32 (2016), 251-258. MR 3587893
.

Files

Files Size Format View
CzechMathJ_69-2019-1_8.pdf 242.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo