Previous |  Up |  Next

Article

Title: A note on a conjecture on niche hypergraphs (English)
Author: Kaemawichanurat, Pawaton
Author: Jiarasuksakun, Thiradet
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 93-97
Summary lang: English
.
Category: math
.
Summary: For a digraph $D$, the niche hypergraph $N\mathcal {H}(D)$ of $D$ is the hypergraph having the same set of vertices as $D$ and the set of hyperedges $E(N\mathcal {H}(D)) = \{e \subseteq V(D) \colon |e| \geq 2$ and there exists a vertex $v$ such that $e = N^{-}_{D}(v)$ or $e = N^{+}_{D}(v)\}$. A digraph is said to be acyclic if it has no directed cycle as a subdigraph. For a given hypergraph $\mathcal {H}$, the niche number $\hat {n}(\mathcal {H})$ is the smallest integer such that $\mathcal {H}$ together with $\hat {n}(\mathcal {H})$ isolated vertices is the niche hypergraph of an acyclic digraph. C. Garske, M. Sonntag and H. M. Teichert (2016) conjectured that for a linear hypercycle $\mathcal {C}_{m}$, $m \geq 2$, if $\min \{|e| \colon e \in E(\mathcal {C}_{m})\} \geq 3$, then $\hat {n}(\mathcal {C}_{m}) = 0$. In this paper, we prove that this conjecture is true. (English)
Keyword: niche hypergraph
Keyword: digraph
Keyword: linear hypercycle
MSC: 05C65
idZBL: Zbl 07088772
idMR: MR3923577
DOI: 10.21136/CMJ.2018.0182-17
.
Date available: 2019-03-08T14:56:51Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147620
.
Reference: [1] Garske, C., Sonntag, M., Teichert, H. M.: Niche Hypergraphs.Discuss. Math., Graph Theory 36 (2016), 819-832. Zbl 1350.05112, MR 3557202, 10.7151/dmgt.1893
.

Files

Files Size Format View
CzechMathJ_69-2019-1_9.pdf 245.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo