| Title: | Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters (English) | 
| Author: | Li, Yali | 
| Author: | Chen, Xiaoyou | 
| Author: | Li, Huimin | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 69 | 
| Issue: | 1 | 
| Year: | 2019 | 
| Pages: | 173-181 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters. (English) | 
| Keyword: | $p$-group | 
| Keyword: | nonlinear irreducible character | 
| Keyword: | non-faithful character | 
| MSC: | 20C15 | 
| idZBL: | Zbl 07088777 | 
| idMR: | MR3923582 | 
| DOI: | 10.21136/CMJ.2018.0230-17 | 
| . | 
| Date available: | 2019-03-08T14:59:14Z | 
| Last updated: | 2021-04-05 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/147625 | 
| . | 
| Reference: | [1] Berkovich, Ya. G., Zhmud', E. M.: Characters of Finite Groups. Part 2.Translations of Mathematical Monographs 181, American Mathematical Society, Providence (1998). Zbl 0934.20009, MR 1486039 | 
| Reference: | [2] Fernández-Alcober, G. A., Moretó, A.: Groups with two extreme character degrees and their normal subgroups.Trans. Am. Math. Soc. 353 (2001), 2171-2192. Zbl 0968.20005, MR 1814066, 10.1090/S0002-9947-01-02685-X | 
| Reference: | [3] : The GAP Group.GAP---Groups, Algorithms, and Programming, Version 4.8.3 (2016), http://www.gap-system.org. | 
| Reference: | [4] Iranmanesh, A., Saeidi, A.: Finite groups with a unique nonlinear nonfaithful irreducible character.Arch. Math., Brno 47 (2011), 91-98. Zbl 1249.20009, MR 2813535 | 
| Reference: | [5] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69, Academic Press, New York (1976). Zbl 0337.20005, MR 0460423, 10.1090/chel/359 | 
| Reference: | [6] Saeidi, A.: Classification of solvable groups possessing a unique nonlinear non-faithful irreducible character.Cent. Eur. J. Math. 12 (2014), 79-83. Zbl 1287.20013, MR 3121823, 10.2478/s11533-013-0327-4 | 
| Reference: | [7] Seitz, G. M.: Finite groups having only one irreducible representation of degree greater than one.Proc. Am. Math. Soc. 19 (1968), 459-461. Zbl 0244.20010, MR 0222160, 10.2307/2035551 | 
| Reference: | [8] Wang, H., Chen, X., Zeng, J.: Zeros of Brauer characters.Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1435-1440. Zbl 1274.20007, MR 2927433, 10.1016/S0252-9602(12)60112-X | 
| Reference: | [9] Zhang, G. X.: Finite groups with exactly two nonlinear irreducible characters.Chin. Ann. Math., Ser. A 17 (1996), 227-232 Chinese. Zbl 0856.20008, MR 1397112 | 
| . |