Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
unconstrained optimization; trust region method; scaled memoryless BFGS update; nonmonotone technique; global convergence
Summary:
Trust region methods are a class of effective iterative schemes in numerical optimization. In this paper, a new improved nonmonotone adaptive trust region method for solving unconstrained optimization problems is proposed. We construct an approximate model where the approximation to Hessian matrix is updated by the scaled memoryless BFGS update formula, and incorporate a nonmonotone technique with the new proposed adaptive trust region radius. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some suitable and standard assumptions, it is shown that the proposed algorithm possesses global convergence and superlinear convergence. Numerical results demonstrate that the proposed method is very promising.
References:
[1] Ahookhosh, M., Amini, K.: A nonmonotone trust region method with adaptive radius for unconstrained optimization problems. Comput. Math. Appl. 60 (2010), 411-422. DOI 10.1016/j.camwa.2010.04.034 | MR 2665646 | Zbl 1201.90184
[2] Ahookhosh, M., Amini, K.: An efficient nonmonotone trust-region method for unconstrained optimization. Numer. Algorithms 59 (2012), 523-540. DOI 10.1007/s11075-011-9502-5 | MR 2892563 | Zbl 1243.65066
[3] Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10 (2008), 147-161. MR 2424936 | Zbl 1161.90486
[4] Andrei, N.: Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization. Eur. J. Oper. Res. 204 (2010), 410-420. DOI 10.1016/j.ejor.2009.11.030 | MR 2587869 | Zbl 1189.90151
[5] Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., Pedersen, H. C.: The watchdog technique for forcing convergence in algorithms for constrained optimization. Math. Program. Study 16 (1982), 1-17. DOI 10.1007/BFb0120945 | MR 0650626 | Zbl 0477.90072
[6] Conn, A. R., Gould, N. I. M., Toint, P. L.: Trust-Region Methods. MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics; Mathematical Programming Society, Philadelphia (2000). DOI /10.1137/1.9780898719857 | MR 1774899 | Zbl 0958.65071
[7] Deng, N. Y., Xiao, Y., Zhou, F. J.: Nonmonotonic trust region algorithm. J. Optimization Theory Appl. 76 (1993), 259-285. DOI 10.1007/BF00939608 | MR 1203903 | Zbl 0797.90088
[8] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91 (2002), 201-213. DOI 10.1007/s101070100263 | MR 1875515 | Zbl 1049.90004
[9] Fan, J.-Y., Yuan, Y.-X.: A new trust region algorithm with trust region radius converging to zero. Proceedings of the 5th International Conference on Optimization: Techniques and Applications Hong Kong (2001), 786-794. MR 3522937
[10] Gould, N. I. M., Orban, D., Toint, P. L.: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29 (2003), 373-394. DOI 10.1145/962437.962439 | Zbl 1068.90526
[11] Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton's method. SIAM J. Numer. Anal. 23 (1986), 707-716. DOI 10.1137/0723046 | MR 0849278 | Zbl 0616.65067
[12] Kamandi, A., Amini, K., Ahookhosh, M.: An improved adaptive trust-region algorithm. Optim. Lett. 11 (2017), 555-569. DOI 10.1007/s11590-016-1018-4 | MR 3610242 | Zbl 1367.90102
[13] Li, D., Fukushima, M.: A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math. 129 (2001), 15-35. DOI 10.1016/S0377-0427(00)00540-9 | MR 1823208 | Zbl 0984.65055
[14] Maratos, N.: Exact penalty function algorithms for finite dimensional and control optimization problems. Ph.D. Thesis, University of London, London (1978).
[15] Marquardt, D. W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11 (1963), 431-441. DOI 10.1137/0111030 | MR 0153071 | Zbl 0112.10505
[16] Peyghami, M. R., Tarzanagh, D. A.: A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems. Comput. Optim. Appl. 61 (2015), 321-341. DOI 10.1007/s10589-015-9726-8 | MR 3349838 | Zbl 1326.90081
[17] Powell, M. J. D.: A new algorithm for unconstrained optimization. Nonlinear Programming, Proceedings of a Symposium Conducted by the Mathematics Research Center Academic Press, New York (1970), 31-65. DOI 10.1016/B978-0-12-597050-1.50006-3 | MR 0272162 | Zbl 0228.90043
[18] Rezaee, S., Babaie-Kafaki, S.: An adaptive nonmonotone trust region algorithm. Optim. Methods Softw. 34 (2019), 264-277. DOI 10.1080/10556788.2017.1364738 | MR 3909020 | Zbl 07024419
[19] Shi, Z.-J., Guo, J.: A new trust region method with adaptive radius. Comput. Optim. Appl. 41 (2008), 225-242. DOI 10.1007/s10589-007-9099-8 | MR 2447894 | Zbl 1216.90086
[20] Sun, W.: Nonmonotone trust region method for solving optimization problems. Appl. Math. Comput. 156 (2004), 159-174. DOI 10.1016/j.amc.2003.07.008 | MR 2087420 | Zbl 1059.65055
[21] Sun, W., Yuan, Y.: Optimization Theory and Methods. Nonlinear Programming. Springer Optimization and Its Applications 1, Springer, New York (2006). DOI 10.1007/b106451 | MR 2232297 | Zbl 1129.90002
[22] Winfield, D.: Function minimization by interpolation in a data table. J. Inst. Math. Appl. 12 (1973), 339-347. DOI 10.1093/imamat/12.3.339 | MR 0329263 | Zbl 0274.90060
[23] Zhang, J.-L., Zhang, X.-S.: A nonmonotone adaptive trust region method and its convergence. Comput. Math. Appl. 45 (2003), 1469-1477. DOI 10.1016/S0898-1221(03)00130-5 | MR 1992076 | Zbl 1065.90071
[24] Zhang, X., Zhang, J., Liao, L.: An adaptive trust region method and its convergence. Sci. China, Ser. A 45 (2002), 620-631. DOI 10.1360/02ys9067 | MR 1911178 | Zbl 1105.90361
Partner of
EuDML logo