Previous |  Up |  Next

Article

Title: An improved nonmonotone adaptive trust region method (English)
Author: Xue, Yanqin
Author: Liu, Hongwei
Author: Liu, Zexian
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 3
Year: 2019
Pages: 335-350
Summary lang: English
.
Category: math
.
Summary: Trust region methods are a class of effective iterative schemes in numerical optimization. In this paper, a new improved nonmonotone adaptive trust region method for solving unconstrained optimization problems is proposed. We construct an approximate model where the approximation to Hessian matrix is updated by the scaled memoryless BFGS update formula, and incorporate a nonmonotone technique with the new proposed adaptive trust region radius. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some suitable and standard assumptions, it is shown that the proposed algorithm possesses global convergence and superlinear convergence. Numerical results demonstrate that the proposed method is very promising. (English)
Keyword: unconstrained optimization
Keyword: trust region method
Keyword: scaled memoryless BFGS update
Keyword: nonmonotone technique
Keyword: global convergence
MSC: 90C30
idZBL: Zbl 07088744
idMR: MR3956176
DOI: 10.21136/AM.2019.0138-18
.
Date available: 2019-05-24T08:52:14Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147721
.
Reference: [1] Ahookhosh, M., Amini, K.: A nonmonotone trust region method with adaptive radius for unconstrained optimization problems.Comput. Math. Appl. 60 (2010), 411-422. Zbl 1201.90184, MR 2665646, 10.1016/j.camwa.2010.04.034
Reference: [2] Ahookhosh, M., Amini, K.: An efficient nonmonotone trust-region method for unconstrained optimization.Numer. Algorithms 59 (2012), 523-540. Zbl 1243.65066, MR 2892563, 10.1007/s11075-011-9502-5
Reference: [3] Andrei, N.: An unconstrained optimization test functions collection.Adv. Model. Optim. 10 (2008), 147-161. Zbl 1161.90486, MR 2424936
Reference: [4] Andrei, N.: Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization.Eur. J. Oper. Res. 204 (2010), 410-420. Zbl 1189.90151, MR 2587869, 10.1016/j.ejor.2009.11.030
Reference: [5] Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., Pedersen, H. C.: The watchdog technique for forcing convergence in algorithms for constrained optimization.Math. Program. Study 16 (1982), 1-17. Zbl 0477.90072, MR 0650626, 10.1007/BFb0120945
Reference: [6] Conn, A. R., Gould, N. I. M., Toint, P. L.: Trust-Region Methods.MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics; Mathematical Programming Society, Philadelphia (2000). Zbl 0958.65071, MR 1774899, /10.1137/1.9780898719857
Reference: [7] Deng, N. Y., Xiao, Y., Zhou, F. J.: Nonmonotonic trust region algorithm.J. Optimization Theory Appl. 76 (1993), 259-285. Zbl 0797.90088, MR 1203903, 10.1007/BF00939608
Reference: [8] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles.Math. Program. 91 (2002), 201-213. Zbl 1049.90004, MR 1875515, 10.1007/s101070100263
Reference: [9] Fan, J.-Y., Yuan, Y.-X.: A new trust region algorithm with trust region radius converging to zero.Proceedings of the 5th International Conference on Optimization: Techniques and Applications Hong Kong (2001), 786-794. MR 3522937
Reference: [10] Gould, N. I. M., Orban, D., Toint, P. L.: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited.ACM Trans. Math. Softw. 29 (2003), 373-394. Zbl 1068.90526, 10.1145/962437.962439
Reference: [11] Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton's method.SIAM J. Numer. Anal. 23 (1986), 707-716. Zbl 0616.65067, MR 0849278, 10.1137/0723046
Reference: [12] Kamandi, A., Amini, K., Ahookhosh, M.: An improved adaptive trust-region algorithm.Optim. Lett. 11 (2017), 555-569. Zbl 1367.90102, MR 3610242, 10.1007/s11590-016-1018-4
Reference: [13] Li, D., Fukushima, M.: A modified BFGS method and its global convergence in nonconvex minimization.J. Comput. Appl. Math. 129 (2001), 15-35. Zbl 0984.65055, MR 1823208, 10.1016/S0377-0427(00)00540-9
Reference: [14] Maratos, N.: Exact penalty function algorithms for finite dimensional and control optimization problems.Ph.D. Thesis, University of London, London (1978).
Reference: [15] Marquardt, D. W.: An algorithm for least-squares estimation of nonlinear parameters.J. Soc. Ind. Appl. Math. 11 (1963), 431-441. Zbl 0112.10505, MR 0153071, 10.1137/0111030
Reference: [16] Peyghami, M. R., Tarzanagh, D. A.: A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems.Comput. Optim. Appl. 61 (2015), 321-341. Zbl 1326.90081, MR 3349838, 10.1007/s10589-015-9726-8
Reference: [17] Powell, M. J. D.: A new algorithm for unconstrained optimization.Nonlinear Programming, Proceedings of a Symposium Conducted by the Mathematics Research Center Academic Press, New York (1970), 31-65. Zbl 0228.90043, MR 0272162, 10.1016/B978-0-12-597050-1.50006-3
Reference: [18] Rezaee, S., Babaie-Kafaki, S.: An adaptive nonmonotone trust region algorithm.Optim. Methods Softw. 34 (2019), 264-277. Zbl 07024419, MR 3909020, 10.1080/10556788.2017.1364738
Reference: [19] Shi, Z.-J., Guo, J.: A new trust region method with adaptive radius.Comput. Optim. Appl. 41 (2008), 225-242. Zbl 1216.90086, MR 2447894, 10.1007/s10589-007-9099-8
Reference: [20] Sun, W.: Nonmonotone trust region method for solving optimization problems.Appl. Math. Comput. 156 (2004), 159-174. Zbl 1059.65055, MR 2087420, 10.1016/j.amc.2003.07.008
Reference: [21] Sun, W., Yuan, Y.: Optimization Theory and Methods. Nonlinear Programming.Springer Optimization and Its Applications 1, Springer, New York (2006). Zbl 1129.90002, MR 2232297, 10.1007/b106451
Reference: [22] Winfield, D.: Function minimization by interpolation in a data table.J. Inst. Math. Appl. 12 (1973), 339-347. Zbl 0274.90060, MR 0329263, 10.1093/imamat/12.3.339
Reference: [23] Zhang, J.-L., Zhang, X.-S.: A nonmonotone adaptive trust region method and its convergence.Comput. Math. Appl. 45 (2003), 1469-1477. Zbl 1065.90071, MR 1992076, 10.1016/S0898-1221(03)00130-5
Reference: [24] Zhang, X., Zhang, J., Liao, L.: An adaptive trust region method and its convergence.Sci. China, Ser. A 45 (2002), 620-631. Zbl 1105.90361, MR 1911178, 10.1360/02ys9067
.

Files

Files Size Format View
AplMat_64-2019-3_5.pdf 317.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo