Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
inverse eigenvalue problem; leading principal minor; graph of a matrix
Summary:
We study an inverse eigenvalue problem (IEP) of reconstructing a special kind of symmetric acyclic matrices whose graph is a generalized star graph. The problem involves the reconstruction of a matrix by the minimum and maximum eigenvalues of each of its leading principal submatrices. To solve the problem, we use the recurrence relation of characteristic polynomials among leading principal minors. The necessary and sufficient conditions for the solvability of the problem are derived. Finally, a numerical algorithm and some examples are given.
References:
[1] Chu, M. T., Golub, G. H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2005). DOI 10.1093/acprof:oso/9780198566649.001.0001 | MR 2263317 | Zbl 1075.65058
[2] Coakley, E. S., Rokhlin, V.: A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices. Appl. Comput. Harmon. Anal. 34 (2013), 379-414. DOI 10.1016/j.acha.2012.06.003 | MR 3027910 | Zbl 1264.65051
[3] Hogben, L.: Spectral graph theory and the inverse eigenvalue problem of a graph. Electron. J. Linear Algebra 14 (2005), 12-31. DOI 10.13001/1081-3810.1174 | MR 2202430 | Zbl 1162.05333
[4] Johnson, C. R., Duarte, A. L., Saiago, C. M.: Inverse eigenvalue problems and lists of multiplicities of eigengvalues for matrices whose graph is a tree: the case of generalized stars and double generalized stars. Linear Algebra Appl. 373 (2003), 311-330. DOI 10.1016/S0024-3795(03)00582-2 | MR 2022294 | Zbl 1035.15010
[5] Monfared, K. H., Shader, B. L.: Construction of matrices with a given graph and prescribed interlaced spectral data. Linear Algebra Appl. 438 (2013), 4348-4358. DOI 10.1016/j.laa.2013.01.036 | MR 3034535 | Zbl 1282.05141
[6] Nylen, P., Uhlig, F.: Inverse eigenvalue problems associated with spring-mass systems. Linear Algebra Appl. 254 (1997), 409-425. DOI 10.1016/S0024-3795(96)00316-3 | MR 1436689 | Zbl 0879.15007
[7] Peng, J., Hu, X.-Y., Zhang, L.: Two inverse eigenvalue problems for a special kind of matrices. Linear Algebra Appl. 416 (2006), 336-347. DOI 10.1016/j.laa.2005.11.017 | MR 2242733 | Zbl 1097.65053
[8] Sharma, D., Sen, M.: Inverse eigenvalue problems for two special acyclic matrices. Mathematics 4 (2016), Article ID 12, 11 pages. DOI 10.3390/math4010012 | Zbl 1382.65109
[9] Sharma, D., Sen, M.: Inverse eigenvalue problems for acyclic matrices whose graph is a dense centipede. Spec. Matrices 6 (2018), 77-92. DOI 10.1515/spma-2018-0008 | MR 3764333 | Zbl 1391.15098
[10] Xu, W.-R., Chen, G.-L.: On inverse eigenvalue problems for two kinds of special banded matrices. Filomat 31 (2017), 371-385. DOI 10.2298/FIL1702371X | MR 3628846
Partner of
EuDML logo