# Article

Full entry | PDF   (0.3 MB)
Keywords:
Diophantine inequalities; Davenport-Heilbronn method; prime
Summary:
Let $k\geq 5$ be an odd integer and $\eta$ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu$ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma$ with $0<\sigma <1/(8\vartheta (k))$, the inequality $$|\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+ \eta |<\Bigl (\max _{1\leq j\leq 5} p_j\Bigr )^{-\sigma }$$ has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^{(k-5)/2}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\geq 11$. This improves a recent result in W. Ge, T. Wang (2018).
References:
[1] Baker, A.: On some diophantine inequalities involving primes. J. Reine Angew. Math. 228 (1967), 166-181. DOI 10.1515/crll.1967.228.166 | MR 0217016 | Zbl 0155.09202
[2] Baker, R. C., Harman, G.: Diophantine approximation by prime numbers. J. Lond. Math. Soc., II. Ser. 25 (1982), 201-215. DOI 10.1112/jlms/s2-25.2.201 | MR 0653378 | Zbl 0443.10015
[3] Bourgain, J.: On the Vinogradov mean value. Proc. Steklov Inst. Math. 296 (2017), 30-40 translated from Tr. Mat. Inst. Steklova 296 2017 36-46. DOI 10.1134/S0081543817010035 | MR 3640771 | Zbl 1371.11138
[4] Cook, R. J.: The value of additive forms at prime arguments. J. Théor. Nombres Bordx. 13 (2001), 77-91. DOI 10.5802/jtnb.305 | MR 1838071 | Zbl 1047.11095
[5] Davenport, H., Heilbronn, H.: On indefinite quadratic forms in five variables. J. Lond. Math. Soc. 21 (1946), 185-193. DOI 10.1112/jlms/s1-21.3.185 | MR 0020578 | Zbl 0060.11914
[6] Ge, W., Wang, T.: On Diophantine problems with mixed powers of primes. Acta Arith. 182 (2018), 183-199. DOI 10.4064/aa170225-23-10 | MR 3749367 | Zbl 06857931
[7] Harman, G.: Trigonometric sums over primes I. Mathematika 28 (1981), 249-254. DOI 10.1112/S0025579300010305 | MR 0645105 | Zbl 0465.10029
[8] Harman, G.: Diophantine approximation by prime numbers. J. Lond. Math. Soc., II. Ser. 44 (1991), 218-226. DOI 10.1112/jlms/s2-44.2.218 | MR 1136436 | Zbl 0754.11010
[9] Harman, G.: The values of ternary quadratic forms at prime arguments. Mathematika 51 (2004), 83-96. DOI 10.1112/S0025579300015527 | MR 2220213 | Zbl 1107.11043
[10] Heath-Brown, D. R.: Weyl's inequality, Hua's inequality, and Waring's problem. J. Lond. Math. Soc., II. Ser. 38 (1988), 216-230. DOI 10.1112/jlms/s2-38.2.216 | MR 0966294 | Zbl 0619.10046
[11] Hua, L.-K.: Some results in additive prime-number theory. Q. J. Math., Oxf. Ser. 9 (1938), 68-80. DOI 10.1093/qmath/os-9.1.68 | MR 3363459 | Zbl 0018.29404
[12] Languasco, A., Zaccagnini, A.: A Diophantine problem with a prime and three squares of primes. J. Number Theory 132 (2012), 3016-3028. DOI 10.1016/j.jnt.2012.06.015 | MR 2965205 | Zbl 1306.11032
[13] Languasco, A., Zaccagnini, A.: A Diophantine problem with prime variables. Highly Composite: Papers in Number Theory V. Kumar Murty, R. Thangadurai Ramanujan Mathematical Society Lecture Notes Series 23, Ramanujan Mathematical Society, Mysore (2016), 157-168. MR 3692733 | Zbl 1382.11006
[14] Li, W., Wang, T.: Diophantine approximation with four squares and one $k$-th power of primes. J. Math. Sci. Adv. Appl. 6 (2010), 1-16. MR 2828771 | Zbl 1238.11047
[15] Li, W., Wang, T.: Diophantine approximation with two primes and one square of prime. Chin. Q. J. Math. 27 (2012), 417-423. Zbl 1274.11111
[16] Matomäki, K.: Diophantine approximation by primes. Glasg. Math. J. 52 (2010), 87-106. DOI 10.1017/S0017089509990176 | MR 2587819 | Zbl 1257.11035
[17] Mu, Q.: Diophantine approximation with four squares and one $k$th power of primes. Ramanujan J. 39 (2016), 481-496. DOI 10.1007/s11139-015-9740-6 | MR 3472121 | Zbl 06562458
[18] Mu, Q.: One Diophantine inequality with unlike powers of prime variables. Int. J. Number Theory 13 (2017), 1531-1545. DOI 10.1142/S1793042117500853 | MR 3656207 | Zbl 06737274
[19] Mu, Q., Qu, Y.: A Diophantine inequality with prime variables and mixed power. Acta Math. Sin., Chin. Ser. 58 (2015), 491-500 Chinese. MR 3443185 | Zbl 1340.11055
[20] Ramachandra, K.: On the sums $\sum\nolimits_{j=1}^K\lambda_jf_j(p_j)$. J. Reine Angew. Math. 262/263 (1973), 158-165. DOI 10.1515/crll.1973.262-263.158 | MR 0327661 | Zbl 0266.10017
[21] Vaughan, R. C.: Diophantine approximation by prime numbers. I. Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. DOI 10.1112/plms/s3-28.2.373 | MR 0337812 | Zbl 0274.10045
[22] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125, Cambridge University Press, Cambridge (1997). DOI 10.1017/CBO9780511470929.001 | MR 1435742 | Zbl 0868.11046
[23] Vinogradov, I. M.: Representation of an odd number as a sum of three primes. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 15 (1937), 169-172. Zbl 0016.29101

Partner of