Previous |  Up |  Next

Article

Title: Extensions of covariantly finite subcategories revisited (English)
Author: He, Jing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 403-415
Summary lang: English
.
Category: math
.
Summary: Extriangulated categories were introduced by Nakaoka and Palu by extracting the similarities between exact categories and triangulated categories. A notion of homotopy cartesian square in an extriangulated category is defined in this article. We prove that in an extriangulated category with enough projective objects, the extension subcategory of two covariantly finite subcategories is covariantly finite. As an application, we give a simultaneous generalization of a result of X. W. Chen (2009) and of a result of R. Gentle, G. Todorov (1996). (English)
Keyword: extriangulated category
Keyword: covariantly finite subcategory
MSC: 18E10
MSC: 18E30
idZBL: Zbl 07088793
idMR: MR3959953
DOI: 10.21136/CMJ.2018.0338-17
.
Date available: 2019-05-24T08:57:33Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147733
.
Reference: [1] Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories.Adv. Math. 86 (1991), 111-152. Zbl 0774.16006, MR 1097029, 10.1016/0001-8708(91)90037-8
Reference: [2] Barot, M., Kussin, D., Lenzing, H.: The Grothendieck group of a cluster category.J. Pure Appl. Algebra 212 (2008), 33-46. Zbl 1148.16005, MR 2355032, 10.1016/j.jpaa.2007.04.007
Reference: [3] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories.Mem. Amer. Math. Soc. 188 (2007). Zbl 1124.18005, MR 2327478, 10.1090/memo/0883
Reference: [4] Bühler, T.: Exact categories.Expo. Math. 28 (2010), 1-69. Zbl 1192.18007, MR 2606234, 10.1016/j.exmath.2009.04.004
Reference: [5] Chen, X. W.: Extensions of covariantly finite subcategories.Arch. Math. 93 (2009), 29-35. Zbl 1181.18007, MR 2520641, 10.1007/s00013-009-0013-8
Reference: [6] Gentle, R., Todorov, G.: Extensions, kernels and cokernels of homologically finite subcategories.Representation theory of algebras. Seventh international conference, August 22-26, 1994, Cocoyoc, Mexico Bautista, Raymundo et al. American Mathematical Society. CMS Conf. Proc. 18 (1996), 227-235. Zbl 0858.18007, MR 1388053
Reference: [7] Hügel, L. A., Marks, F., Vitória, J.: Silting modules and ring epimorphisms.Adv. Math. 303 (2016), 1044-1076. Zbl 06636662, MR 3552543, 10.1016/j.aim.2016.08.035
Reference: [8] Iyama, O., Lerner, B.: Tilting bundles on orders on $\mathbb{P}^d$.Isr. J. Math. 211 (2016), 147-169. Zbl 1365.14004, MR 3474959, 10.1007/s11856-015-1263-8
Reference: [9] Keller, B.: On triangulated orbit categories.Doc. Math. 10 (2005), 21-56. Zbl 1086.18006, MR 2184464
Reference: [10] Mendoza, O., Santiago, V.: Homological systems in triangulated categories.Appl. Categ. Struct. 24 (2016), 1-35. Zbl 1336.18004, MR 3448426, 10.1007/s10485-014-9384-5
Reference: [11] Nakaoka, H., Palu, Y.: Mutation via Hovey twin cotorsion pairs and model structures in extriangulated categories.Available at https://arxiv.org/abs/1605.05607v2.
Reference: [12] Zhou, P. Y., Zhu, B.: Triangulated quotient categories revisited.J. Algebra 502 (2018), 196-232. Zbl 06851776, MR 3774890, 10.1016/j.jalgebra.2018.01.031
.

Files

Files Size Format View
CzechMathJ_69-2019-2_9.pdf 306.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo