Previous |  Up |  Next

Article

Title: Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data (English)
Author: Ling, Amy Poh Ai
Author: Shimojō, Masahiko
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 3
Year: 2019
Pages: 287-297
Summary lang: English
.
Category: math
.
Summary: We consider solutions of quasilinear equations $u_{t}=\Delta u^{m} + u^{p}$ in $\mathbb R^{N}$ with the initial data $u_{0}$ satisfying $0 < u_{0}< M$ and $\lim _{|x|\to \infty }u_{0}(x)=M$ for some constant $M>0$. It is known that if $0<m<p$ with $p>1$, the blow-up set is empty. We find solutions $u$ that blow up throughout $\mathbb R^{N}$ when $m>p>1$. (English)
Keyword: quasilinear heat equation
Keyword: total blow-up
Keyword: blow-up only at space infinity
MSC: 35B44
MSC: 35K59
idZBL: Zbl 07088852
idMR: MR3985858
DOI: 10.21136/MB.2018.0026-18
.
Date available: 2019-07-24T11:11:53Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147775
.
Reference: [1] Galaktionov, V. A.: Asymptotic behavior of unbounded solutions of the nonlinear equation $u_t=(u^\sigma u_x)_x+u^\beta$ near a ``singular'' point.Sov. Math., Dokl. 33 (1986), 840-844 translated from Dokl. Akad. Nauk SSSR 288 1986 1293-1297. Zbl 0629.35061, MR 0852454
Reference: [2] Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P., Samarskii, A. A.: Unbounded solutions of the Cauchy problem for the parabolic equation $u_t=\nabla (u^{\sigma }\nabla u)+u^{\beta}$.Sov. Phys., Dokl. 25 (1980), 458-459 translated from Dokl. Akad. Nauk SSSR 252 1980 1362-1364. Zbl 515.35045, MR 0581597
Reference: [3] Giga, Y., Umeda, N.: Blow-up directions at space infinity for solutions of semilinear heat equations.Bol. Soc. Parana. Mat. (3) 23 (2005), 9-28 correction ibid. 24 2006 19-24. Zbl 1173.35531, MR 2242285, 10.5269/bspm.v23i1-2.7450
Reference: [4] Giga, Y., Umeda, N.: On blow-up at space infinity for semilinear heat equations.J. Math. Anal. Appl. 316 (2006), 538-555. Zbl 1106.35029, MR 2206688, 10.1016/j.jmaa.2005.05.007
Reference: [5] Lacey, A. A.: The form of blow-up for nonlinear parabolic equations.Proc. R. Soc. Edinb., Sect. A 98 (1984), 183-202. Zbl 0556.35077, MR 0765494, 10.1017/S0308210500025609
Reference: [6] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Mathematical Monographs 23. AMS, Providence (1968). Zbl 0174.15403, MR 0241822, 10.1090/mmono/023
Reference: [7] Mochizuki, K., Suzuki, R.: Blow-up sets and asymptotic behavior of interfaces for quasilinear degenerate parabolic equations in $R^N$.J. Math. Soc. Japan 44 (1992), 485-504. Zbl 0805.35065, MR 1167379, 10.2969/jmsj/04430485
Reference: [8] Oleinik, O. A., Kalašinkov, A. S., Chou, Y.-L.: The Cauchy problem and boundary problems for equations of the type of non-stationary filtration.Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 667-704 Russian. Zbl 0093.10302, MR 0099834
Reference: [9] Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P.: Blow-up in Quasilinear Parabolic Equations.De Gruyter Expositions in Mathematics 19. Walter de Gruyter, Berlin (1995). Zbl 1020.35001, MR 1330922, 10.1515/9783110889864.535
Reference: [10] Seki, Y.: On directional blow-up for quasilinear parabolic equations with fast diffusion.J. Math. Anal. Appl. 338 (2008), 572-587. Zbl 1144.35030, MR 2386440, 10.1016/j.jmaa.2007.05.033
Reference: [11] Seki, Y., Umeda, N., Suzuki, R.: Blow-up directions for quasilinear parabolic equations.Proc. R. Soc. Edinb., Sect. A, Math. 138 (2008), 379-405. Zbl 1167.35393, MR 2406697, 10.1017/S0308210506000801
Reference: [12] Shimojō, M.: The global profile of blow-up at space infinity in semilinear heat equations.J. Math. Kyoto Univ. 48 (2008), 339-361. Zbl 1184.35078, MR 2436740, 10.1215/kjm/1250271415
Reference: [13] Suzuki, R.: On blow-up sets and asymptotic behavior of interfaces of one-dimensional quasilinear degenerate parabolic equations.Publ. Res. Inst. Math. Sci. 27 (1991), 375-398. Zbl 0789.35024, MR 1121244, 10.2977/prims/1195169661
.

Files

Files Size Format View
MathBohem_144-2019-3_5.pdf 291.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo