Previous |  Up |  Next

Article

Title: Existence of solutions for some quasilinear $\vec {p}(x)$-elliptic problem with Hardy potential (English)
Author: Azroul, Elhoussine
Author: Bouziani, Mohammed
Author: Hjiaj, Hassane
Author: Youssfi, Ahmed
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 3
Year: 2019
Pages: 299-324
Summary lang: English
.
Category: math
.
Summary: We consider the anisotropic quasilinear elliptic Dirichlet problem $$ \begin {cases} \displaystyle -\sum _{i=1}^{N} D^{i} a_{i}(x,u,\nabla u) + |u|^{s(x)-1}u= f +\lambda \frac {|u|^{p_{0}(x)-2}u}{|x|^{p_{0}(x)}}&\text {in}\ \Omega ,\\ u = 0 & \text {on}\ \partial \Omega , \end {cases} $$ where $\Omega $ is an open bounded subset of $\Bbb R^N$ containing the origin. We show the existence of entropy solution for this equation where the data $f$ is assumed to be in $L^{1}(\Omega )$ and $\lambda $ is a positive constant. (English)
Keyword: anisotropic variable exponent Sobolev space
Keyword: quasilinear elliptic equation
Keyword: Hardy potential
Keyword: entropy solution
Keyword: $L^{1}$-data
MSC: 35J15
MSC: 35J62
idZBL: Zbl 07088853
idMR: MR3985859
DOI: 10.21136/MB.2018.0093-17
.
Date available: 2019-07-24T11:12:35Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147776
.
Reference: [1] Abdellaoui, B., Peral, I., Primo, A.: Elliptic problems with a Hardy potential and critical growth in the gradient: non-resonance and blow-up results.J. Differ. Equations 239 (2007), 386-416. Zbl 1331.35128, MR 2344278, 10.1016/j.jde.2007.05.010
Reference: [2] Alberico, A., Blasio, G. Di, Feo, F.: A priori estimates for solutions to anisotropic elliptic problems via symmetrization.Math. Nachr. 290 (2017), 986-1003. Zbl 1375.35136, MR 3652210, 10.1002/mana.201500282
Reference: [3] Antontsev, S. N., Chipot, M.: Anisotropic equations: uniqueness and existence results.Differ. Integral Equ. 21 (2008), 401-419. Zbl 1224.35088, MR 2483260
Reference: [4] Antontsev, S. N., Rodrigues, J. F.: On stationary thermo-rheological viscous flows.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. Zbl 1117.76004, MR 2246902, 10.1007/s11565-006-0002-9
Reference: [5] Barletta, G., Cianchi, A.: Dirichlet problems for fully anisotropic elliptic equations.Proc. R. Soc. Edinb., Sect. A, Math. 147 (2017), 25-60. Zbl 1388.35043, MR 3603525, 10.1017/S0308210516000020
Reference: [6] Benboubker, M. B., Azroul, E., Barbara, A.: Quasilinear elliptic problems with nonstandard growth.Electron. J. Differ. Equ. 2011 (2011), Paper No. 62, 16 pages. Zbl 1221.35165, MR 2801247
Reference: [7] Benboubker, M. B., Hjiaj, H., Ouaro, S.: Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent.J. Appl. Anal. Comput. 4 (2014), 245-270. Zbl 1316.35104, MR 3226454
Reference: [8] Bendahmane, M., Chrif, M., Manouni, S. El: An approximation result in generalized anisotropic Sobolev spaces and applications.Z. Anal. Anwend. 30 (2011), 341-353. Zbl 1231.35065, MR 2819499, 10.4171/ZAA/1438
Reference: [9] Bendahmane, M., Karlsen, K. H., Saad, M.: Nonlinear anisotropic elliptic and parabolic equations with variable exponents and {$L^1$} data.Commun. Pure Appl. Anal. 12 (2013), 1201-1220. Zbl 1268.35053, MR 2989682, 10.3934/cpaa.2013.12.1201
Reference: [10] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. Zbl 0866.35037, MR 1354907
Reference: [11] Boccardo, L., Gallouët, T., Marcellini, P.: Anisotropic equations in $L^1$.Differ. Integral Equ. 9 (1996), 209-212. Zbl 0838.35048, MR 1364043
Reference: [12] Cianchi, A.: Symmetrization in anisotropic elliptic problems.Commun. Partial Differ. Equations 32 (2007), 693-717. Zbl 1219.35028, MR 2334829, 10.1080/03605300600634973
Reference: [13] Cî{r}stea, F. C., Vétois, J.: Fundamental solutions for anisotropic elliptic equations: existence and a priori estimates.Commun. Partial Differ. Equations 40 (2015), 727-765. Zbl 1326.35153, MR 3299354, 10.1080/03605302.2014.969374
Reference: [14] Nardo, R. Di, Feo, F.: Existence and uniqueness for nonlinear anisotropic elliptic equations.Arch. Math. 102 (2014), 141-153. Zbl 1293.35108, MR 3169023, 10.1007/s00013-014-0611-y
Reference: [15] Nardo, R. Di, Feo, F., Guibé, O.: Uniqueness result for nonlinear anisotropic elliptic equations.Adv. Differ. Equ. 18 (2013), 433-458. Zbl 1272.35092, MR 3086461
Reference: [16] Diening, L., Harjulehto, P., Hästö, P., Růžička, R. M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [17] DiPerna, R. J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: Global existence and weak stability.Ann. Math. (2) 130 (1989), 321-366. Zbl 0698.45010, MR 1014927, 10.2307/1971423
Reference: [18] DiPerna, R. J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511-547. Zbl 0696.34049, MR 1022305, 10.1007/BF01393835
Reference: [19] Guibé, O.: Uniqueness of the renormalized solution to a class of nonlinear elliptic equations.On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments Quad. Mat. 23. Dipartimento di Matematica, Seconda Università di Napoli, Caserta; Aracne, Rome. (2008), 256-282 A. Alvino et al. Zbl 1216.35036, MR 2762168
Reference: [20] Guibé, O., Mercaldo, A.: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data.Trans. Am. Math. Soc. 360 (2008), 643-669. Zbl 1156.35042, MR 2346466, 10.1090/S0002-9947-07-04139-6
Reference: [21] Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space.J. Differ. Equations 264 (2018), 341-377. Zbl 1376.35046, MR 3712945, 10.1016/j.jde.2017.09.007
Reference: [22] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [23] Liu, Y., Davidson, R., Taylor, P.: Investigation of the touch sensitivity of ER fluid based tactile display.Smart Structures and Materials: Smart Structures and Integrated Systems. Proceeding of SPIE 5764 (2005), 92-99. 10.1117/12.598713
Reference: [24] Mihăilescu, M., Pucci, P., Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent.J. Math. Anal. Appl. 340 (2008), 687-698. Zbl 1135.35058, MR 2376189, 10.1016/j.jmaa.2007.09.015
Reference: [25] Mokhtari, F.: Regularity of the solution to nonlinear anisotropic elliptic equations with variable exponents and irregular data.Mediterr. J. Math. 14 (2017), Article No. 141, 18 pages. Zbl 1377.35102, MR 3656509, 10.1007/s00009-017-0941-7
Reference: [26] Porzio, M. M.: On some quasilinear elliptic equations involving Hardy potential.Rend. Mat. Appl., VII. Ser. 27 (2007), 277-297. Zbl 1156.35044, MR 2398427
Reference: [27] Vétois, J.: Existence and regularity for critical anisotropic equations with critical directions.Adv. Differ. Equ. 16 (2011), 61-83. Zbl 1220.35081, MR 2766894
Reference: [28] Vétois, J.: Strong maximum principles for anisotropic elliptic and parabolic equations.Adv. Nonlinear Stud. 12 (2012), 101-114. Zbl 1247.35007, MR 2895946, 10.1515/ans-2012-0106
Reference: [29] Wittbold, P., Zimmermann, A.: Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and {$L^1$}-data.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 2990-3008. Zbl 1185.35088, MR 2580154, 10.1016/j.na.2009.11.041
Reference: [30] Youssfi, A., Azroul, E., Hjiaj, H.: On nonlinear elliptic equations with Hardy potential and {$L^1$}-data.Monatsh. Math. 173 (2014), 107-129. Zbl 1285.35035, MR 3148663, 10.1007/s00605-013-0516-z
.

Files

Files Size Format View
MathBohem_144-2019-3_6.pdf 399.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo