Title:
|
On the cardinality of Urysohn spaces and weakly $H$-closed spaces (English) |
Author:
|
Basile, Fortunata Aurora |
Author:
|
Carlson, Nathan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
144 |
Issue:
|
3 |
Year:
|
2019 |
Pages:
|
325-336 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce the cardinal invariant $\theta $-$aL'(X)$, related to $\theta $-$aL(X)$, and show that if $X$ is Urysohn, then $|X|\leq 2^{\theta \text {-}aL'(X)\chi (X)}$. As $\theta $-$aL'(X)\leq aL(X)$, this represents an improvement of the Bella-Cammaroto inequality. \endgraf We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly $H$-closed spaces, related to $H$-closed spaces. (English) |
Keyword:
|
Urysohn space |
Keyword:
|
$\theta $-closure |
Keyword:
|
pseudocharacter |
Keyword:
|
almost Lindelöf degree |
Keyword:
|
cardinality |
Keyword:
|
cardinal invariant |
MSC:
|
54A25 |
MSC:
|
54D10 |
MSC:
|
54D20 |
idZBL:
|
Zbl 07088854 |
idMR:
|
MR3985860 |
DOI:
|
10.21136/MB.2018.0037-18 |
. |
Date available:
|
2019-07-24T11:13:04Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147777 |
. |
Reference:
|
[1] Alas, O. T., Kočinac, L. D.: More cardinal inequalities on Urysohn spaces.Math. Balk., New Ser. 14 (2000), 247-251. Zbl 1043.54500, MR 1891143 |
Reference:
|
[2] Basile, F. A., Bonanzinga, M., Carlson, N.: Variations on known and recent cardinality bounds.Topology Appl. 240 (2018), 228-237. Zbl 1388.54004, MR 3784407, 10.1016/j.topol.2018.03.005 |
Reference:
|
[3] Bell, M., Ginsburg, J., Woods, G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number.Pac. J. Math. 79 (1979), 37-45. Zbl 0367.54003, MR 0526665, 10.2140/pjm.1978.79.37 |
Reference:
|
[4] Bella, A., Cammaroto, F.: On the cardinality of Urysohn spaces.Can. Math. Bull. 31 (1988), 153-158. Zbl 0646.54005, MR 0942065, 10.4153/CMB-1988-023-4 |
Reference:
|
[5] Cammaroto, F., Catalioto, A., Pansera, B. A., Tsaban, B.: On the cardinality of the $\theta$-closed hull of sets.Topology Appl. 160 (2013), 2371-2378. Zbl 1284.54011, MR 3120651, 10.1016/j.topol.2013.07.031 |
Reference:
|
[6] Cammaroto, F., Kočinac, L.: On $\theta$-tightness.Facta Univ., Ser. Math. Inf. 8 (1993), 77-85. Zbl 0823.54002, MR 1340985 |
Reference:
|
[7] Carlson, N. A., Porter, J. R.: On the cardinality of Hausdorff spaces and $H$-closed spaces.Topology Appl. 241 (2018), 377-395. Zbl 06894012, MR 3794175, 10.1016/j.topol.2017.01.027 |
Reference:
|
[8] Engelking, R.: General Topology.Wydawnictwo Naukowe PWN, Warsaw Polish (2007). Zbl 1281.54001, MR 0500779 |
Reference:
|
[9] Hodel, R. E.: Arhangel'ski{\uı's solution to Alexandroff's problem: a survey.Topology Appl. 153 (2006), 2199-2217. Zbl 1099.54001, MR 2238725, 10.1016/j.topol.2005.04.011 |
Reference:
|
[10] Kočinac, L. D.: On the cardinality of Urysohn and $H$-closed spaces.Proc. Math. Conf., Priština, 1994 Univ. of Priština, Faculty of Sciences, Priština (1995), L. D. Kočinac 105-111. Zbl 0877.54002, MR 1466279 |
Reference:
|
[11] Kočinac, L. D.: On the cardinality of Urysohn spaces.Questions and Answers in General Topology 13 (1995), 211-216. Zbl 0838.54002, MR 1350238 |
Reference:
|
[12] Porter, J. R., Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York (1988). Zbl 0652.54016, MR 0918341, 10.1007/978-1-4612-3712-9 |
Reference:
|
[13] Veličko, N. V.: $H$-closed topological spaces.Am. Math. Soc., Transl., II. Ser. 78 (1968), 103-118 translated from Mat. Sb., n. Ser. 70 1966 98-112. Zbl 0183.27302, MR 0198418, 10.1090/trans2/078/05 |
Reference:
|
[14] Willard, S., Dissanayake, U. N. B.: The almost Lindelöf degree.Can. Math. Bull. 27 (1984), 452-455. Zbl 0551.54003, MR 0763044, 10.4153/CMB-1984-070-2 |
. |