Previous |  Up |  Next

Article

Title: On the cardinality of Urysohn spaces and weakly $H$-closed spaces (English)
Author: Basile, Fortunata Aurora
Author: Carlson, Nathan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 3
Year: 2019
Pages: 325-336
Summary lang: English
.
Category: math
.
Summary: We introduce the cardinal invariant $\theta $-$aL'(X)$, related to $\theta $-$aL(X)$, and show that if $X$ is Urysohn, then $|X|\leq 2^{\theta \text {-}aL'(X)\chi (X)}$. As $\theta $-$aL'(X)\leq aL(X)$, this represents an improvement of the Bella-Cammaroto inequality. \endgraf We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly $H$-closed spaces, related to $H$-closed spaces. (English)
Keyword: Urysohn space
Keyword: $\theta $-closure
Keyword: pseudocharacter
Keyword: almost Lindelöf degree
Keyword: cardinality
Keyword: cardinal invariant
MSC: 54A25
MSC: 54D10
MSC: 54D20
idZBL: Zbl 07088854
idMR: MR3985860
DOI: 10.21136/MB.2018.0037-18
.
Date available: 2019-07-24T11:13:04Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147777
.
Reference: [1] Alas, O. T., Kočinac, L. D.: More cardinal inequalities on Urysohn spaces.Math. Balk., New Ser. 14 (2000), 247-251. Zbl 1043.54500, MR 1891143
Reference: [2] Basile, F. A., Bonanzinga, M., Carlson, N.: Variations on known and recent cardinality bounds.Topology Appl. 240 (2018), 228-237. Zbl 1388.54004, MR 3784407, 10.1016/j.topol.2018.03.005
Reference: [3] Bell, M., Ginsburg, J., Woods, G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number.Pac. J. Math. 79 (1979), 37-45. Zbl 0367.54003, MR 0526665, 10.2140/pjm.1978.79.37
Reference: [4] Bella, A., Cammaroto, F.: On the cardinality of Urysohn spaces.Can. Math. Bull. 31 (1988), 153-158. Zbl 0646.54005, MR 0942065, 10.4153/CMB-1988-023-4
Reference: [5] Cammaroto, F., Catalioto, A., Pansera, B. A., Tsaban, B.: On the cardinality of the $\theta$-closed hull of sets.Topology Appl. 160 (2013), 2371-2378. Zbl 1284.54011, MR 3120651, 10.1016/j.topol.2013.07.031
Reference: [6] Cammaroto, F., Kočinac, L.: On $\theta$-tightness.Facta Univ., Ser. Math. Inf. 8 (1993), 77-85. Zbl 0823.54002, MR 1340985
Reference: [7] Carlson, N. A., Porter, J. R.: On the cardinality of Hausdorff spaces and $H$-closed spaces.Topology Appl. 241 (2018), 377-395. Zbl 06894012, MR 3794175, 10.1016/j.topol.2017.01.027
Reference: [8] Engelking, R.: General Topology.Wydawnictwo Naukowe PWN, Warsaw Polish (2007). Zbl 1281.54001, MR 0500779
Reference: [9] Hodel, R. E.: Arhangel'ski{\uı's solution to Alexandroff's problem: a survey.Topology Appl. 153 (2006), 2199-2217. Zbl 1099.54001, MR 2238725, 10.1016/j.topol.2005.04.011
Reference: [10] Kočinac, L. D.: On the cardinality of Urysohn and $H$-closed spaces.Proc. Math. Conf., Priština, 1994 Univ. of Priština, Faculty of Sciences, Priština (1995), L. D. Kočinac 105-111. Zbl 0877.54002, MR 1466279
Reference: [11] Kočinac, L. D.: On the cardinality of Urysohn spaces.Questions and Answers in General Topology 13 (1995), 211-216. Zbl 0838.54002, MR 1350238
Reference: [12] Porter, J. R., Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York (1988). Zbl 0652.54016, MR 0918341, 10.1007/978-1-4612-3712-9
Reference: [13] Veličko, N. V.: $H$-closed topological spaces.Am. Math. Soc., Transl., II. Ser. 78 (1968), 103-118 translated from Mat. Sb., n. Ser. 70 1966 98-112. Zbl 0183.27302, MR 0198418, 10.1090/trans2/078/05
Reference: [14] Willard, S., Dissanayake, U. N. B.: The almost Lindelöf degree.Can. Math. Bull. 27 (1984), 452-455. Zbl 0551.54003, MR 0763044, 10.4153/CMB-1984-070-2
.

Files

Files Size Format View
MathBohem_144-2019-3_7.pdf 315.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo