Title:
|
On prolongations of rank one discrete valuations (English) |
Author:
|
El Fadil, Lhoussain |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
60 |
Issue:
|
3 |
Year:
|
2019 |
Pages:
|
299-304 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(K,\nu)$ be a valued field, where $\nu$ is a rank one discrete valuation. Let $R$ be its ring of valuation, ${\mathfrak m}$ its maximal ideal, and $L$ an extension of $K$, defined by a monic irreducible polynomial $F(X) \in R[X]$. Assume that $\overline{F}(X)$ factors as a product of $r$ distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly $r$ distinct valuations of $K$ extending $\nu$ is given, in such a way that it generalizes the results given in the paper ``Prolongations of valuations to finite extensions" by S.\,K. Khanduja, M. Kumar (2010). (English) |
Keyword:
|
discrete valuation |
Keyword:
|
extension of valuation |
Keyword:
|
prime ideal factorization |
MSC:
|
11S05 |
MSC:
|
13A18 |
idZBL:
|
Zbl 07144895 |
idMR:
|
MR4034433 |
DOI:
|
10.14712/1213-7243.2019.017 |
. |
Date available:
|
2019-10-29T12:51:47Z |
Last updated:
|
2021-10-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147854 |
. |
Reference:
|
[1] Cohen S. D., Movahhedi A., Salinier A.: Factorization over local fields and the irreducibility of generalized difference polynomials.Mathematika 47 (2000), no. 1–2, 173–196. MR 1924496, 10.1112/S0025579300015801 |
Reference:
|
[2] Deajim A., El Fadil L.: On the extensions of a discrete valuation in a number field.Math. Slovaca 69 (2019), no. 5, 1009–1022. MR 4017386, 10.1515/ms-2017-0285 |
Reference:
|
[3] Dedekind R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen.Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 23 (1878), 3–38 (German). |
Reference:
|
[4] Guàrdia J., Montes J., Nart E.: Newton polygons of higher order in algebraic number theory.Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416. MR 2833586, 10.1090/S0002-9947-2011-05442-5 |
Reference:
|
[5] Hensel K.: Untersuchung der Fundamentalgleichung einer Gattung für eine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante.J. Reine Angew. Math. 113 (1894), 61–83 (German). MR 1580345 |
Reference:
|
[6] Khanduja S. K., Kumar M.: On a theorem of Dedekind.Int. J. Number Theory 4 (2008), no. 6, 1019–1025. MR 2483309, 10.1142/S1793042108001833 |
Reference:
|
[7] Khanduja S. K., Kumar M.: Prolongations of valuations to finite extensions.Manuscripta Math. 131 (2010), no. 3–4, 323–334. MR 2592083, 10.1007/s00229-009-0320-1 |
Reference:
|
[8] Khanduja S. K., Kumar M.: A generalization of a theorem of Ore.J. Pure Appl. Algebra 218 (2014), no. 7, 1206–1218. MR 3168492, 10.1016/j.jpaa.2013.11.014 |
Reference:
|
[9] Neukirch J.: Algebraic Number Theory.Grundlehren der Mathematischen Wissenschaften, 322, Springer, Berlin, 1999. MR 1697859, 10.1007/978-3-662-03983-0 |
Reference:
|
[10] Ore Ö.: Newtonsche Polygone in der Theorie der algebraischen Körper.Math. Ann. 99 (1928), no. 1, 84–117 (German). MR 1512440, 10.1007/BF01459087 |
. |