Previous |  Up |  Next

Article

Title: On prolongations of rank one discrete valuations (English)
Author: El Fadil, Lhoussain
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 3
Year: 2019
Pages: 299-304
Summary lang: English
.
Category: math
.
Summary: Let $(K,\nu)$ be a valued field, where $\nu$ is a rank one discrete valuation. Let $R$ be its ring of valuation, ${\mathfrak m}$ its maximal ideal, and $L$ an extension of $K$, defined by a monic irreducible polynomial $F(X) \in R[X]$. Assume that $\overline{F}(X)$ factors as a product of $r$ distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly $r$ distinct valuations of $K$ extending $\nu$ is given, in such a way that it generalizes the results given in the paper ``Prolongations of valuations to finite extensions" by S.\,K. Khanduja, M. Kumar (2010). (English)
Keyword: discrete valuation
Keyword: extension of valuation
Keyword: prime ideal factorization
MSC: 11S05
MSC: 13A18
idZBL: Zbl 07144895
idMR: MR4034433
DOI: 10.14712/1213-7243.2019.017
.
Date available: 2019-10-29T12:51:47Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147854
.
Reference: [1] Cohen S. D., Movahhedi A., Salinier A.: Factorization over local fields and the irreducibility of generalized difference polynomials.Mathematika 47 (2000), no. 1–2, 173–196. MR 1924496, 10.1112/S0025579300015801
Reference: [2] Deajim A., El Fadil L.: On the extensions of a discrete valuation in a number field.Math. Slovaca 69 (2019), no. 5, 1009–1022. MR 4017386, 10.1515/ms-2017-0285
Reference: [3] Dedekind R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen.Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 23 (1878), 3–38 (German).
Reference: [4] Guàrdia J., Montes J., Nart E.: Newton polygons of higher order in algebraic number theory.Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416. MR 2833586, 10.1090/S0002-9947-2011-05442-5
Reference: [5] Hensel K.: Untersuchung der Fundamentalgleichung einer Gattung für eine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante.J. Reine Angew. Math. 113 (1894), 61–83 (German). MR 1580345
Reference: [6] Khanduja S. K., Kumar M.: On a theorem of Dedekind.Int. J. Number Theory 4 (2008), no. 6, 1019–1025. MR 2483309, 10.1142/S1793042108001833
Reference: [7] Khanduja S. K., Kumar M.: Prolongations of valuations to finite extensions.Manuscripta Math. 131 (2010), no. 3–4, 323–334. MR 2592083, 10.1007/s00229-009-0320-1
Reference: [8] Khanduja S. K., Kumar M.: A generalization of a theorem of Ore.J. Pure Appl. Algebra 218 (2014), no. 7, 1206–1218. MR 3168492, 10.1016/j.jpaa.2013.11.014
Reference: [9] Neukirch J.: Algebraic Number Theory.Grundlehren der Mathematischen Wissenschaften, 322, Springer, Berlin, 1999. MR 1697859, 10.1007/978-3-662-03983-0
Reference: [10] Ore Ö.: Newtonsche Polygone in der Theorie der algebraischen Körper.Math. Ann. 99 (1928), no. 1, 84–117 (German). MR 1512440, 10.1007/BF01459087
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-3_1.pdf 253.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo