Previous |  Up |  Next

Article

Title: A note on generalizations of semisimple modules (English)
Author: Kaynar, Engin
Author: Türkmen, Burcu N.
Author: Türkmen, Ergül
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 3
Year: 2019
Pages: 305-312
Summary lang: English
.
Category: math
.
Summary: A left module $M$ over an arbitrary ring is called an $\mathcal{RD}$-module (or an $\mathcal{RS}$-module) if every submodule $N$ of $M$ with ${\rm Rad}(M)\subseteq N$ is a direct summand of (a supplement in, respectively) $M$. In this paper, we investigate the various properties of $\mathcal{RD}$-modules and $\mathcal{RS}$-modules. We prove that $M$ is an $\mathcal{RD}$-module if and only if $M={\rm Rad}(M)\oplus X$, where $X$ is semisimple. We show that a finitely generated $\mathcal{RS}$-module is semisimple. This gives us the characterization of semisimple rings in terms of $\mathcal{RS}$-modules. We completely determine the structure of these modules over Dedekind domains. (English)
Keyword: radical
Keyword: supplement
MSC: 16D10
MSC: 16D99
idZBL: Zbl 07144896
idMR: MR4034434
DOI: 10.14712/1213-7243.2019.011
.
Date available: 2019-10-29T12:52:42Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147860
.
Reference: [1] Alizade R., Bilhan G., Smith P. F.: Modules whose maximal submodules have supplements.Comm. Algebra 29 (2001), no. 6, 2389–2405. MR 1845118, 10.1081/AGB-100002396
Reference: [2] Büyükaşik E., Pusat-Yilmaz D.: Modules whose maximal submodules are supplements.Hacet. J. Math. Stat. 39 (2010), no. 4, 477–487. MR 2796587
Reference: [3] Büyükaşik E., Türkmen E.: Strongly radical supplemented modules.Ukrainian Math. J. 63 (2012), no. 8, 1306–1313. MR 3109654
Reference: [4] Lomp C.: On semilocal modules and rings.Comm. Algebra 27 (1999), no. 4, 1921–1935. MR 1679679, 10.1080/00927879908826539
Reference: [5] Nebiyev C., Pancar A.: On supplement submodules.Ukrainian Math. J. 65 (2013), no. 7, 1071–1078. MR 3145891, 10.1007/s11253-013-0842-2
Reference: [6] Türkmen B. N., Pancar A.: Generalizations of $\oplus$-supplemented modules.Ukrainian Math. J. 65 (2013), no. 4, 612–622. MR 3125012, 10.1007/s11253-013-0799-1
Reference: [7] Türkmen B. N., Türkmen E.: On a generalization of weakly supplemented modules.An. Ştiin. Univ. Al. I. Cuza Din Iaşi. Mat. (N.S.) 63 (2017), no. 2, 441–448. MR 3718613
Reference: [8] Wisbauer R.: Foundations of Module and Ring Theory.A handbook for study and research, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991. Zbl 0746.16001, MR 1144522
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-3_2.pdf 250.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo