Previous |  Up |  Next

Article

Title: The reciprocal Dunford--Pettis property of order $p$ in projective tensor products (English)
Author: Ghenciu, Ioana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 3
Year: 2019
Pages: 351-360
Summary lang: English
.
Category: math
.
Summary: We investigate whether the projective tensor product of two Banach spaces $X$ and $Y$ has the reciprocal Dunford--Pettis property of order $p$, $1\le\allowbreak p<\infty$, when $X$ and $Y$ have the respective property. (English)
Keyword: reciprocal Dunford--Pettis property
Keyword: spaces of compact operators
MSC: 28B05
MSC: 46B20
MSC: 46B28
idZBL: Zbl 07144899
idMR: MR4034437
DOI: 10.14712/1213-7243.2019.014
.
Date available: 2019-10-29T12:58:28Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147859
.
Reference: [1] Albiac F., Kalton N. J.: Topics in Banach Space Theory.Graduate Texts in Mathematics, 233, Springer, New York, 2006. Zbl 1094.46002, MR 2192298
Reference: [2] Bator E. M., Lewis P. W.: Operators having weakly precompact adjoints.Math. Nachr. 157 (1992), 99–103. Zbl 0792.47021, MR 1233050, 10.1002/mana.19921570109
Reference: [3] Bessaga C., Pełczyński A.: On bases and unconditional convergence of series in Banach spaces.Studia Math. 17 (1958), 151–164. MR 0115069, 10.4064/sm-17-2-151-164
Reference: [4] Bourgain J.: New classes of $\mathcal{L}^p$-spaces.Lecture Notes in Mathematics, 889, Springer, Berlin, 1981. MR 0639014
Reference: [5] Castillo J. M., Sanchez F.: Dunford–Pettis-like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024
Reference: [6] Diestel J.: A survey of results related to the Dunford–Pettis property.Proc. of the Conf. on Integration, Topology, and Geometry in Linear Spaces, Contemp. Math., 2, Amer. Math. Soc., Provicence, 1980, pages 15–60. MR 0621850
Reference: [7] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004
Reference: [8] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297
Reference: [9] Diestel J., Uhl J. J. Jr.: Vector Measures.Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl 0521.46035, MR 0453964
Reference: [10] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell^1$.Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR 0861172
Reference: [11] Emmanuele G.: Dominated operators on $C[0,1]$ and the $( CRP)$.Collect. Math. 41 (1990), no. 1, 21–25. MR 1134442
Reference: [12] Emmanuele G.: On the reciprocal Dunford–Pettis property and projective tensor products.Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 1, 161–166. MR 1075128, 10.1017/S0305004100069632
Reference: [13] Emmanuele G.: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331–335. MR 1142753, 10.1017/S0305004100075435
Reference: [14] Emmanuele G., Hensgen W.: Property $ (V)$ of Pelczyński in projective tensor products.Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 227–231. MR 1660381
Reference: [15] Emmanuele G., John K.: Uncomplementability of spaces of compact operators in larger spaces of operators.Czechoslovak Math. J. 47 (1997), no. 1, 19–31. Zbl 0903.46006, MR 1435603, 10.1023/A:1022483919972
Reference: [16] Ghenciu I.: Property $(wL)$ and the reciprocal Dunford–Pettis property in projective tensor products.Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR 3390279
Reference: [17] Ghenciu I.: Dunford–Pettis like properties on tensor products.Quaest. Math. 41 (2018), no. 6, 811–828. MR 3857131, 10.2989/16073606.2017.1402383
Reference: [18] Ghenciu I.: The $p$-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets.Acta Math. Hungar. 155 (2018), 439–457. MR 3831309, 10.1007/s10474-018-0836-5
Reference: [19] Ghenciu I., Lewis P.: The Dunford–Pettis property, the Gelfand-Phillips property, and $L$-sets.Colloq. Math. 106 (2006), no. 2, 311–324. MR 2283818, 10.4064/cm106-2-11
Reference: [20] Ghenciu I., Lewis P.: The embeddability of $c_0$ in spaces of operators.Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256. Zbl 1167.46016, MR 2481977, 10.4064/ba56-3-7
Reference: [21] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295
Reference: [22] Pełczyński A.: On Banach spaces containing $L_1(\mu)$.Studia Math. 30 (1968), 231–246. MR 0232195, 10.4064/sm-30-2-231-246
Reference: [23] Pełczyński A., Semadeni Z.: Spaces of continuous functions (III). Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211–222. MR 0107806, 10.4064/sm-18-2-211-222
Reference: [24] Pitt H. R.: A note on bilinear forms.J. London Math. Soc. 11 (1936), no. 3, 174–180. Zbl 0014.31201, MR 1574344, 10.1112/jlms/s1-11.3.174
Reference: [25] Rosenthal H.: Point-wise compact subsets of the first Baire class.Amer. J. Math. 99 (1977), no. 2, 362–378. MR 0438113, 10.2307/2373824
Reference: [26] Ryan R. A.: Introduction to Tensor Products of Banach Spaces.Springer Monographs in Mathematics, Springer, London, 2002. Zbl 1090.46001, MR 1888309
Reference: [27] Wojtaszczyk P.: Banach Spaces for Analysts.Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991. MR 1144277
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-3_5.pdf 280.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo