Previous |  Up |  Next

Article

Title: On commutative rings whose maximal ideals are idempotent (English)
Author: Kourki, Farid
Author: Tribak, Rachid
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 3
Year: 2019
Pages: 313-322
Summary lang: English
.
Category: math
.
Summary: We prove that for a commutative ring $R$, every noetherian (artinian) $R$-module is quasi-injective if and only if every noetherian (artinian) $R$-module is quasi-projective if and only if the class of noetherian (artinian) $R$-modules is socle-fine if and only if the class of noetherian (artinian) $R$-modules is radical-fine if and only if every maximal ideal of $R$ is idempotent. (English)
Keyword: artinian module
Keyword: modules of finite length
Keyword: noetherian module
Keyword: quasi-injective module
Keyword: quasi-projective module
Keyword: radical-fine class of modules
Keyword: socle-fine class of modules
MSC: 13C13
MSC: 13E05
MSC: 13E10
MSC: 13E99
idZBL: Zbl 07144897
idMR: MR4034435
DOI: 10.14712/1213-7243.2019.012
.
Date available: 2019-10-29T12:54:29Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147861
.
Reference: [1] Amin I., Ibrahim Y., Yousif M.: $ C3$-modules.Algebra Colloq. 22 (2015), no. 4, 655–670. MR 3403699, 10.1142/S1005386715000553
Reference: [2] Anderson F. W., Fuller K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl 0765.16001, MR 1245487, 10.1007/978-1-4612-4418-9_2
Reference: [3] Behboodi M., Karamzadeh O. A. S., Koohy H.: Modules whose certain submodules are prime.Vietnam J. Math. 32 (2004), no. 3, 303–317. MR 2101067
Reference: [4] Byrd K. A.: Rings whose quasi-injective modules are injective.Proc. Amer. Math. Soc. 33 (1972), 235–240. MR 0310009, 10.1090/S0002-9939-1972-0310009-7
Reference: [5] Cheatham T. J., Smith J. R.: Regular and semisimple modules.Pacific J. Math. 65 (1976), no. 2, 315–323. MR 0422348, 10.2140/pjm.1976.65.315
Reference: [6] Dickson S. E.: Decomposition of modules: II. Rings whithout chain conditions.Math. Z. 104 (1968), 349–357. MR 0229678, 10.1007/BF01110426
Reference: [7] Ding N., Ibrahim Y., Yousif M., Zhou Y.: $ C4$-modules.Comm. Algebra 45 (2017), no. 4, 1727–1740. MR 3576690, 10.1080/00927872.2016.1222412
Reference: [8] Ding N., Ibrahim Y., Yousif M., Zhou Y.: $ D4$-modules.J. Algebra Appl. 16 (2017), no. 9, 1750166, 25 pages. MR 3661633, 10.1142/S0219498817501663
Reference: [9] Gordon R., Robson J. C.: Krull Dimension.Memoirs of the American Mathematical Society, 133, American Mathematical Society, Providence, 1973. MR 0352177
Reference: [10] Hirano Y.: Regular modules and $V$-modules.Hiroshima Math. J. 11 (1981), no. 1, 125–142. MR 0606838, 10.32917/hmj/1206134222
Reference: [11] Idelhadj A., Kaidi El A.: A characterization of semi-artinian rings.Commutative ring theory, Lecture Notes in Pure and Appl. Math., 153, Dekker, New York, 1994, pages 171–179. MR 1261888
Reference: [12] Idelhadj A., Kaidi El A.: Nouvelles caractérisations des V-anneaux et des anneaux pseudo-frobenusiens.Comm. Algebra 23 (1995), no. 14, 5329–5338 (French. English summary). MR 1363605, 10.1080/00927879508825534
Reference: [13] Idelhadj A., Kaidi El A.: The dual of the socle-fine notion and applications.Commutative ring theory, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997, pages 359–367. MR 1422494
Reference: [14] Idelhadj A., Yahya A.: Socle-fine characterization of Dedekind and regular rings.Algebra and Number Theory, Lecture Notes in Pure and Appl. Math., 208, Dekker, New York, 2000, pages 157–163. MR 1724683
Reference: [15] Kaidi A., Baquero D. M., González C. M.: Socle-fine characterization of Artinian and Notherian rings.The mathematical legacy of Hanno Rund, Hadronic Press, Palm Harbor, 1993, pages 191–197. MR 1380787
Reference: [16] Kourki F., Tribak R.: Some results on locally Noetherian modules and locally Artinian modules.Kyungpook Math. J. 58 (2018), no. 1, 1–8. MR 3796012
Reference: [17] Mohamed S. H., Müller B. J.: Continuous and Discrete Modules.London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990. Zbl 0701.16001, MR 1084376
Reference: [18] Penk T., Žemlička J.: Commutative tall rings.J. Algebra Appl. 13 (2014), no. 4, 1350129, 11 pages. MR 3153864, 10.1142/S0219498813501296
Reference: [19] Sarath B.: Krull dimension and Noetherianness.Illinois J. Math. 20 (1976), no. 2, 329–335. MR 0399158, 10.1215/ijm/1256049903
Reference: [20] Shock R. C.: Dual generalizations of the Artinian and Noetherian conditions.Pacific J. Math. 54 (1974), no. 2, 227–235. MR 0409549, 10.2140/pjm.1974.54.227
Reference: [21] Storrer H. H.: On Goldman's primary decomposition.Lectures on rings and modules, Lecture Notes in Math., 246, Springer, Berlin, 1972, pages 617–661. MR 0360717, 10.1007/BFb0059571
Reference: [22] Yousif M. F.: $V$-modules with Krull dimension.Bull. Austral. Math. Soc. 37 (1988), no. 2, 237–240. MR 0930794, 10.1017/S0004972700026782
Reference: [23] Yousif M., Amin I., Ibrahim Y.: $ D3$-modules.Comm. Algebra 42 (2014), no. 2, 578–592. MR 3169590, 10.1080/00927872.2012.718823
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-3_3.pdf 257.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo