Previous |  Up |  Next

Article

Title: On the integral representation of finely superharmonic functions (English)
Author: Aslimani, Abderrahim
Author: El Ghazi, Imad
Author: El Kadiri, Mohamed
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 3
Year: 2019
Pages: 323-350
Summary lang: English
.
Category: math
.
Summary: In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset $U$ of a Brelot $\mathcal{P}$-harmonic space $\Omega$ with countable base of open subsets and satisfying the axiom $D$. When $\Omega$ satisfies the hypothesis of uniqueness, we define the Martin boundary of $U$ and the Martin kernel $K$ and we obtain the integral representation of invariant functions by using the kernel $K$. As an application of the integral representation we extend to the cone $\mathcal{S(U)}$ of nonnegative finely superharmonic functions in $U$ a partition theorem of Brelot. We also establish an approximation result of invariant functions by finely harmonic functions in the case where the minimal invariant functions are finely harmonic. (English)
Keyword: finely harmonic function
Keyword: finely superharmonic function
Keyword: fine potential
Keyword: fine Green kernel
Keyword: integral representation
Keyword: Martin boundary
Keyword: fine Riesz-Martin kernel
MSC: 31C35
MSC: 31C40
MSC: 31D05
idZBL: Zbl 07144898
idMR: MR4034436
DOI: 10.14712/1213-7243.2019.019
.
Date available: 2019-10-29T12:56:32Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147852
.
Reference: [1] Alfsen E. M.: Compact Convex Sets and Boundary Integrals.Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer, New York, 1971. Zbl 0209.42601, MR 0445271
Reference: [2] Armitage D. H., Gardiner S. J.: Classical Potential Theory.Springer Monographs in Mathematics, Springer, London, 2001. Zbl 0972.31001, MR 1801253
Reference: [3] Beznea L., Boboc N.: On the tightness of capacities associated with sub-Markovian resolvents.Bull. London Math. Soc. 37 (2005), no. 6, 899–907. MR 2186723, 10.1112/S0024609305004856
Reference: [4] Boboc N., Bucur Gh.: Natural localization and natural sheaf property in standard H-cones of functions. I.Rev. Roumaine Math. Pures Appl. 30 (1985), no. 1, 1–21. MR 0789583
Reference: [5] Boboc N., Bucur G., Cornea A.: Order and Convexity in Potential Theory, H-cones.Lecture Notes in Mathematics, 853, Springer, Berlin, 1981. MR 0613980, 10.1007/BFb0090454
Reference: [6] Brelot M.: Sur le principe des singularités positives et la topologie de R. S. Martin..Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N. S.) 23 (1948), 113–138 (French). MR 0026724
Reference: [7] Brelot M.: Sur le théorème de partition de Mme R. M. Hervé.Rocky Mountain J. Math. 10 (1980), no. 1, 293–302 (French). MR 0573877
Reference: [8] Choquet G.: Lectures on Analysis, Vol. II: Representation Theory.W. A. Benjamin, New York, 1969. MR 0250012
Reference: [9] Constantinescu C., Cornea A.: Potential Theory on Harmonic spaces.Die Grundlehren der mathematischen Wissenschaften, 158, Springer, Heidelberg, 1972. MR 0419799
Reference: [10] Dellacherie C., Meyer P.-A.: Probabilités et potentiel.Chapitres XII–XVI, Publications de l'Institut de Mathématiques de l'Université de Strasbourg, Actualités Scientifiques et Industrielles, 1417, Hermann, Paris, 1987 (French). Zbl 0624.60084, MR 0488194
Reference: [11] Doob J. L.: Classical Potential Theory and Its Probabilistic Counterparts.Grundlehren der Mathematischen Wissenschaften, 262, Springer, New Yourk, 1984. MR 0731258
Reference: [12] El Kadiri M.: Sur la décomposition de Riesz et la représentation intégrale des fonctions finement surharmoniques.Positivity 4 (2000), no. 2, 105–114 (French. English summary). MR 1755674, 10.1023/A:1009869923566
Reference: [13] El Kadiri M.: Fonctions séparément finement surharmoniques.Positivity 7 (2003), no. 3, 245–256 (French. English, French summary). MR 2018599
Reference: [14] El Kadiri M., Fuglede B.: Martin boundary of a fine domain and a Fatou-Naïm-Doob theorem for finely superharmonic functions.Potential Anal. 44 (2016), no. 1, 1–25. MR 3455206, 10.1007/s11118-015-9495-0
Reference: [15] El Kadiri M., Fuglede B.: Sweeping at the Martin boundary of a fine domain.Potential Anal. 44 (2016), no. 2, 401–422. MR 3460031, 10.1007/s11118-015-9518-x
Reference: [16] El Kadiri M., Fuglede B.: The Dirichlet problem at the Martin boundary of a fine domain.J. Math. Anal. Appl. 457 (2018), no. 1, 179–199. MR 3702701, 10.1016/j.jmaa.2017.07.066
Reference: [17] Fuglede B.: Finely Harmonic Functions.Lecture Notes in Mathematics, 289, Springer, Berlin, 1972. MR 0450590, 10.1007/BFb0068451
Reference: [18] Fuglede B.: Sur la fonction de Green pour un domaine fin.Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3–4, 201–206 (French. English summary). MR 0430284, 10.5802/aif.579
Reference: [19] Fuglede B.: Finely harmonic mappings and finely holomorphic functions.Ann. Acad. Sci. Fenn. Serie A I Math. 2 (1976), 113–127. MR 0470240, 10.5186/aasfm.1976.0210
Reference: [20] Fuglede B.: Localization in fine potential theory and uniform approximation by subharmonic functions.J. Functional Analysis 49 (1982), no. 1, 52–72. MR 0680856, 10.1016/0022-1236(82)90085-4
Reference: [21] Fuglede B.: Integral representation of fine potentials.Math. Ann. 262 (1983), no. 2, 191–214. MR 0690195, 10.1007/BF01455311
Reference: [22] Fuglede B.: Représentation intégrale des potentiels fins.C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 5, 129–132 (French. English summary). MR 0779693
Reference: [23] Fuglede B.: Fine potential theory.Potential theory—surveys and problems, Prague, 1987, Lecture Notes in Math., 1344, Springer, Berlin, 1988, pages 81–97. MR 0973882, 10.1007/BFb0103345
Reference: [24] Gardiner S. J., Hansen W.: The Riesz decomposition of finely superharmonic functions.Adv. Math. 214 (2007), no. 1, 417–436. MR 2348037, 10.1016/j.aim.2007.02.012
Reference: [25] Hervé R.-M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel.Ann. Inst. Fourier (Grenoble) 12 (1962), 415–517 (French). Zbl 0101.08103, MR 0139756, 10.5802/aif.125
Reference: [26] Le Jan Y.: Quasi-continuous functions associated with Hunt processes.Proc. Amer. Math. Soc. 86 (1982), no. 1, 133–138. MR 0663882
Reference: [27] Le Jan Y.: Quasi-continuous functions and Hunt processes.J. Math. Soc. Japan 35 (1983), no. 1, 37–42. MR 0679072, 10.2969/jmsj/03510037
Reference: [28] Le Jan Y.: Fonctions “càd-làg" sur les trajectoires d'un processus de Ray.Théorie du Potentiel, Orsay, 1983, Lecture Notes in Math., 1096, Springer, Berlin, 1984, pages 412–418 (French). MR 0890369, 10.1007/BFb0100122
Reference: [29] Meyer P. A.: Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory.Ann. Inst. Fourier (Grenoble) 13 (1963), fasc. 2, 357–372. MR 0162956, 10.5802/aif.149
Reference: [30] Mokobodzki G.: Représentation intégrale des fonctions surharmoniques au moyen des réduites.Ann. Inst. Fourier (Grenoble) 15 (1965), fasc. 1, 103–112 (French). Zbl 0134.09502, MR 0196110, 10.5802/aif.199
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-3_4.pdf 429.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo