Previous |  Up |  Next

Article

Title: Contractible simplicial objects (English)
Author: Barr, Michael
Author: Kennison, John F.
Author: Raphael, Robert
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 4
Year: 2019
Pages: 473-495
Summary lang: English
.
Category: math
.
Summary: We raise the question of when a simplicial object in a catetgory is deemed contractible. The literature offers three definitions. One is the existence of an ``extra degeneracy'', indexed by $-1$, which does not quite live up to the name. This can be strengthened to a ``strong extra degeneracy". Another possibility is that it be homotopic to a constant simplicial object. Despite claims in the literature to the contrary, we show that all three are distinct concepts with strong extra degeneracy implies extra degeneracy implies homotopic to a constant and give explicit examples to show the converses fail. (English)
Keyword: contractible
Keyword: homotopic to a constant
Keyword: reduced homotopy
Keyword: partial simplicial object
MSC: 18G30
MSC: 55U10
idZBL: Zbl 07177884
idMR: MR4061357
DOI: 10.14712/1213-7243.2019.023
.
Date available: 2020-02-10T16:48:49Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147968
.
Reference: [1] Barr M.: Acyclic Models.ACRM Monograph Series, 17, American Mathematical Society, Providence, 2002. MR 1909353, 10.1090/crmm/017/05
Reference: [2] Beck J. M.: Triples, algebras and cohomology.Repr. Theory Appl. Categ. 2 (2003), 1–59. Zbl 1022.18004, MR 1987896
Reference: [3] Goerss P. G., Jardine J. F.: Simplicial Homotopy Theory.Progress in Mathematics, 174, Birkhäuser, Basel, 1999. MR 1711612
Reference: [4] González B. R.: Simplicial Descent Categories.Translated and revised version of 2007 Thesis from University of Seville, available at arXiv:0804.2154v1 [math.AG], 2008. MR 2864852
Reference: [5] Hamada S.: Contractibility of the digital $n$-space.Appl. Gen. Topol. 16 (2015), no. 1, 15–17. MR 3338816, 10.4995/agt.2015.1826
Reference: [6] Khalimskiĭ E. D.: The topologies of generalized segments.Dokl. Akad. Nauk SSSR 189 (1969), 740–743 (Russian). MR 0256359
Reference: [7] Linton F. E. J.: Applied functorial semantics, II.Sem. on Triples and Categorical Homology Theory, ETH, Zürich, 1966/67, Springer, Berlin, 1969, pages 53–74. MR 0249485
Reference: [8] Meyer J.-P.: Bar and cobar constructions. I.J. Pure Appl. Algebra 33 (1984), no. 2, 163–207. MR 0754954, 10.1016/0022-4049(84)90005-7
Reference: [9] Riehl E.: Categorical Homotopy Theory.New Mathematical Monographs, 24, Cambridge University Press, Cambridge, 2014. MR 3221774
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-4_4.pdf 359.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo