| Title: | Two remarks on Lie rings of $2\times 2$ matrices over commutative associative rings (English) | 
| Author: | Bashkirov, Evgenii L. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 61 | 
| Issue: | 1 | 
| Year: | 2020 | 
| Pages: | 1-10 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $C$ be an associative commutative ring with 1. If $a\in C$, then $aC$ denotes the principal ideal generated by $a$. Let $l, m, n$ be nonzero elements of $C$ such that $mn \in lC$. The set of matrices $\left( \begin{smallmatrix} a_{11} & a_{12}  a_{21} & -a_{11} \end{smallmatrix} \right) $, where $a_{11}\in lC$, $a_{12}\in mC$, $a_{21}\in nC$, forms a Lie ring under Lie multiplication and matrix addition. The paper studies properties of these Lie rings. (English) | 
| Keyword: | Lie ring | 
| Keyword: | associative commutative ring | 
| Keyword: | matrix | 
| MSC: | 17B05 | 
| idZBL: | Zbl 07217153 | 
| idMR: | MR4093424 | 
| DOI: | 10.14712/1213-7243.2020.010 | 
| . | 
| Date available: | 2020-04-30T11:11:31Z | 
| Last updated: | 2022-04-04 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/148068 | 
| . | 
| Reference: | [1] Bashkirov E. L.: On a class of Lie rings of $2\times 2$ matrices over associative commutative rings.Linear Multilinear Algebra 67 (2019), no. 3, 456–478. MR 3909003, 10.1080/03081087.2017.1422235 | 
| Reference: | [2] Bashkirov E. L., Pekönür E.: On matrix Lie rings over a commutative ring that contain the special linear Lie ring.Comment. Math. Univ. Carolin. 57 (2016), no. 1, 1–6. MR 3478334 | 
| Reference: | [3] Borevich, A. I., Shafarevich I. R.: Number Theory.Pure and Applied Mathematics, 20, Academic Press, New York, 1966. MR 0195803 | 
| Reference: | [4] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics, 84, Springer, New York, 1990. MR 1070716 | 
| Reference: | [5] Koibaev V. A., Nuzhin Ya. N.: Subgroups of Chevalley groups and Lie rings of definable by a collection of additive subgroups of the original ring.Fundam. Prikl. Mat. 18 (2013), no. 1, 75–84 (Russian. English, Russian summary); translated in J. Math. Sci. (NY) 201 (2014), no. 4, 458–464. MR 3431766 | 
| Reference: | [6] Nuzhin Ya. N.: Lie rings defined by the root system and family of additive subgroups of the initial ring.Proc. Steklov Inst. Math. 283 (2013), suppl. 1, S119–S125. MR 3476385 | 
| . |