Previous |  Up |  Next

Article

Title: Two remarks on Lie rings of $2\times 2$ matrices over commutative associative rings (English)
Author: Bashkirov, Evgenii L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 1-10
Summary lang: English
.
Category: math
.
Summary: Let $C$ be an associative commutative ring with 1. If $a\in C$, then $aC$ denotes the principal ideal generated by $a$. Let $l, m, n$ be nonzero elements of $C$ such that $mn \in lC$. The set of matrices $\left( \begin{smallmatrix} a_{11} & a_{12} a_{21} & -a_{11} \end{smallmatrix} \right) $, where $a_{11}\in lC$, $a_{12}\in mC$, $a_{21}\in nC$, forms a Lie ring under Lie multiplication and matrix addition. The paper studies properties of these Lie rings. (English)
Keyword: Lie ring
Keyword: associative commutative ring
Keyword: matrix
MSC: 17B05
idZBL: Zbl 07217153
idMR: MR4093424
DOI: 10.14712/1213-7243.2020.010
.
Date available: 2020-04-30T11:11:31Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148068
.
Reference: [1] Bashkirov E. L.: On a class of Lie rings of $2\times 2$ matrices over associative commutative rings.Linear Multilinear Algebra 67 (2019), no. 3, 456–478. MR 3909003, 10.1080/03081087.2017.1422235
Reference: [2] Bashkirov E. L., Pekönür E.: On matrix Lie rings over a commutative ring that contain the special linear Lie ring.Comment. Math. Univ. Carolin. 57 (2016), no. 1, 1–6. MR 3478334
Reference: [3] Borevich, A. I., Shafarevich I. R.: Number Theory.Pure and Applied Mathematics, 20, Academic Press, New York, 1966. MR 0195803
Reference: [4] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics, 84, Springer, New York, 1990. MR 1070716
Reference: [5] Koibaev V. A., Nuzhin Ya. N.: Subgroups of Chevalley groups and Lie rings of definable by a collection of additive subgroups of the original ring.Fundam. Prikl. Mat. 18 (2013), no. 1, 75–84 (Russian. English, Russian summary); translated in J. Math. Sci. (NY) 201 (2014), no. 4, 458–464. MR 3431766
Reference: [6] Nuzhin Ya. N.: Lie rings defined by the root system and family of additive subgroups of the initial ring.Proc. Steklov Inst. Math. 283 (2013), suppl. 1, S119–S125. MR 3476385
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-1_1.pdf 267.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo