Previous |  Up |  Next

Article

Title: Orthomodular lattices that are horizontal sums of Boolean algebras (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 11-20
Summary lang: English
.
Category: math
.
Summary: The paper deals with orthomodular lattices which are so-called horizontal sums of Boolean algebras. It is elementary that every such orthomodular lattice is simple and its blocks are just these Boolean algebras. Hence, the commutativity relation plays a key role and enables us to classify these orthomodular lattices. Moreover, this relation is closely related to the binary commutator which is a term function. Using the class $\mathcal H$ of horizontal sums of Boolean algebras, we establish an identity which is satisfied in the variety generated by $\mathcal H$ but not in the variety of all orthomodular lattices. The concept of ternary discriminator can be generalized for the class $\mathcal H$ in a modified version. Finally, we present several results on varieties generated by finite subsets of finite members of $\mathcal H$. (English)
Keyword: orthomodular lattice
Keyword: horizontal sum
Keyword: commuting elements
Keyword: Boolean algebra
MSC: 06C15
MSC: 06C20
MSC: 06E75
idZBL: Zbl 07217154
idMR: MR4093425
DOI: 10.14712/1213-7243.2020.003
.
Date available: 2020-04-30T11:12:19Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148071
.
Reference: [1] Beran L.: Orthomodular Lattices, Algebraic Approach.Mathematics and Its Applications (East European Series), D. Reidel Publishing, Dordrecht, 1985. Zbl 0558.06008, MR 0784029
Reference: [2] Burris S., Sankappanavar H. P.: A Course in Universal Algebra.Graduate Texts in Mathematics, 78, Springer, New York, 1981. Zbl 0478.08001, MR 0648287, 10.1007/978-1-4613-8130-3_3
Reference: [3] Chajda I., Länger H., Padmanabhan R.: Single identities forcing lattices to be Boolean.Math. Slovaca 68 (2018), no. 4, 713–716. MR 3841901, 10.1515/ms-2017-0138
Reference: [4] Chajda I., Padmanabhan R.: Lattices with unique complementation.Acta Sci. Math. (Szeged) 83 (2017), no. 1–2, 31–34. MR 3701028, 10.14232/actasm-016-514-2
Reference: [5] Jónsson B.: Algebras whose congruence lattices are distributive.Math. Scand. 21 (1967), 110–121. MR 0237402, 10.7146/math.scand.a-10850
Reference: [6] Kalmbach G.: Orthomodular Lattices.London Mathematical Society Monographs, 18, Academic Press, London, 1983. Zbl 0554.06009, MR 0716496
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-1_2.pdf 274.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo