Previous |  Up |  Next

Article

Title: Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings (English)
Author: Jalali, Mitra
Author: Tehranian, Abolfazl
Author: Nikandish, Reza
Author: Rasouli, Hamid
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 27-34
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with identity and $A(R)$ be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of $R$ is defined as the graph ${\rm SAG}(R)$ with the vertex set $A(R)^*=A(R)\setminus\{0\}$ and two distinct vertices $I$ and $J$ are adjacent if and only if $I\cap {\rm Ann}(J)\neq (0)$ and $J\cap {\rm Ann}(I)\neq (0)$. In this paper, the perfectness of ${\rm SAG}(R)$ for some classes of rings $R$ is investigated. (English)
Keyword: strongly annihilating-ideal graph
Keyword: perfect graph
Keyword: chromatic number
Keyword: clique number
MSC: 05C25
MSC: 05C99
MSC: 13A15
MSC: 13B99
idZBL: Zbl 07217156
idMR: MR4093427
DOI: 10.14712/1213-7243.2020.005
.
Date available: 2020-04-30T11:13:58Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148073
.
Reference: [1] Aalipour G., Akbari S., Nikandish R., Nikmehr M. J., Shaveisi F.: On the coloring of the annihilating-ideal graph of a commutative ring.Discrete Math. 312 (2012), no. 17, 2620–2626. MR 2935413, 10.1016/j.disc.2011.10.020
Reference: [2] Anderson D. F., Livingston P. S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), no. 2, 434–447. Zbl 1035.13004, MR 1700509, 10.1006/jabr.1998.7840
Reference: [3] Badawi A.: On the annihilator graph of a commutative ring.Comm. Algebra 42 (2014), no. 1, 108–121. MR 3169557, 10.1080/00927872.2012.707262
Reference: [4] Beck I.: Coloring of commutative rings.J. Algebra 116 (1988), no. 1, 208–226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [5] Behboodi M., Rakeei Z.: The annihilating-ideal graph of commutative rings I.J. Algebra Appl. 10 (2011), no. 4, 727–739. MR 2834112, 10.1142/S0219498811004896
Reference: [6] Chudnovsky M., Robertson N., Seymour P., Thomas R.: The strong perfect graph theorem.Ann. of Math. (2) 164 (2006), no. 1, 51–229. MR 2233847, 10.4007/annals.2006.164.51
Reference: [7] Diestel R.: Graph Theory.Graduate Texts in Mathematics, 173, Springer, New York, 2000. Zbl 1218.05001, MR 1743598
Reference: [8] Nikandish R., Nikmehr M. J., Tohidi N. Kh.: Some results on the strongly annihilating-ideal graph of a commutative ring.Bol. Soc. Mat. Mex. (3) 24 (2018), no. 2, 307–318. MR 3854466, 10.1007/s40590-017-0179-1
Reference: [9] Sharp R. Y.: Steps in Commutative Algebra.London Mathematical Society Student Texts, 51, Cambridge University Press, Cambridge, 2000. MR 1817605
Reference: [10] Taheri R., Behboodi M., Tehranian A.: The spectrum subgraph of the annihilating-ideal graph of a commutative ring.J. Algebra Appl. 14 (2015), no. 8, 1550130, 19 pages. MR 3339815
Reference: [11] Tohidi N. Kh., Nikmehr M. J., Nikandish R.: On the strongly annihilating-ideal graph of a commutative ring.Discrete Math. Algorithms Appl. 9 (2017), no. 2, 1750028, 13 pages. MR 3635064, 10.1142/S1793830917500288
Reference: [12] West D. B.: Introduction to Graph Theory.Prentice Hall, Upper Saddle River, 1996. Zbl 1121.05304, MR 1367739
Reference: [13] Wisbauer R.: Foundations of Module and Ring Theory.Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991. Zbl 0746.16001, MR 1144522
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-1_4.pdf 256.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo