Title:
|
Relative weak derived functors (English) |
Author:
|
Prabakaran, Panneerselvam |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
35-50 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a ring, $n$ a fixed non-negative integer, ${\mathscr{W I}}$ the class of all left $R$-modules with weak injective dimension at most $n$, and ${\mathscr{W F}}$ the class of all right $R$-modules with weak flat dimension at most $n$. Using left (right) ${\mathscr{W I}}$-resolutions and the left derived functors of Hom we study the weak injective dimensions of modules and rings. Also we prove that $- \otimes -$ is right balanced on ${\mathscr{M}}_R \times {_R{\mathscr{M}}}$ by ${\mathscr{W F}} \times {\mathscr{W I}}$, and investigate the global right ${\mathscr{W I}}$-dimension of $_R{\mathscr{M}}$ by right derived functors of $\otimes$. (English) |
Keyword:
|
weak injective module |
Keyword:
|
weak flat module |
Keyword:
|
weak injective dimension |
Keyword:
|
weak flat dimension |
MSC:
|
16E10 |
MSC:
|
16E30 |
MSC:
|
18G25 |
idZBL:
|
Zbl 07217157 |
idMR:
|
MR4093428 |
DOI:
|
10.14712/1213-7243.2020.015 |
. |
Date available:
|
2020-04-30T11:15:02Z |
Last updated:
|
2022-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148074 |
. |
Reference:
|
[1] Ding N.: On envelopes with the unique mapping property.Comm. Algebra. 24 (1996), no. 4, 1459–1470. MR 1380605, 10.1080/00927879608825646 |
Reference:
|
[2] Enochs E. E., Jenda O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000. Zbl 0952.13001, MR 1753146 |
Reference:
|
[3] Enochs E. E., Huang Z.: Injective envelopes and (Gorenstein) flat covers.Algebr. Represent. Theory 15 (2012), no. 6, 1131–1145. MR 2994019, 10.1007/s10468-011-9282-6 |
Reference:
|
[4] Gao Z., Wang F.: Weak injective and weak flat modules.Comm. Algebra 43 (2015), no. 9, 3857–3868. MR 3360853, 10.1080/00927872.2014.924128 |
Reference:
|
[5] Gao Z., Huang Z.: Weak injective covers and dimension of modules.Acta Math. Hungar. 147 (2015), no. 1, 135–157. MR 3391518, 10.1007/s10474-015-0540-7 |
Reference:
|
[6] Göbel R., Trlifaj J.: Approximations and Endomorphism Algebra of Modules.De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, Berlin, 2006. MR 2251271 |
Reference:
|
[7] Rotman J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics, 85, Academic Press, New York, 1979. Zbl 1157.18001, MR 0538169 |
Reference:
|
[8] Stenström B.: Coherent rings and $FP$-injective modules.J. London Math. Soc. (2) 2 (1970), 323–329. MR 0258888, 10.1112/jlms/s2-2.2.323 |
Reference:
|
[9] Xu J.: Flat covers of modules.Lecture Notes in Mathematics, 1634, Springer, Berlin, 1996. MR 1438789, 10.1007/BFb0094173 |
Reference:
|
[10] Zeng Y., Chen J.: Envelopes and covers by modules of finite $FP$-injective dimensions.Comm. Algebra. 38 (2010), no. 10, 3851–3867. MR 2760695, 10.1080/00927870903200851 |
Reference:
|
[11] Zhang D., Ouyang B.: On $n$-coherent rings and $(n, d)$-injective modules.Algebra Colloq. 22 (2015), no. 2, 349–360. MR 3336067, 10.1142/S1005386715000309 |
Reference:
|
[12] Zhao T.: Homological properties of modules with finite weak injective and weak flat dimensions.Bull. Malays. Math. Sci. Soc. 41 (2018), no. 2, 779–805. MR 3781545 |
. |