Previous |  Up |  Next

Article

Title: $T_{2}$ and $T_{3}$ objects at $p$ in the category of proximity spaces (English)
Author: Kula, Muammer
Author: Özkan, Samed
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 2
Year: 2020
Pages: 177-190
Summary lang: English
.
Category: math
.
Summary: In previous papers, various notions of pre-Hausdorff, Hausdorff and regular objects at a point $p$ in a topological category were introduced and compared. The main objective of this paper is to characterize each of these notions of pre-Hausdorff, Hausdorff and regular objects locally in the category of proximity spaces. Furthermore, the relationships that arise among the various ${\rm Pre}T_{2}$, $T_{i}$, $i=0,1,2,3$, structures at a point $p$ are investigated. Finally, we examine the relationships between the generalized separation properties and the separation properties at a point $p$ in this category. (English)
Keyword: topological category
Keyword: proximity space
Keyword: Hausdorff space
Keyword: regular space
MSC: 18B99
MSC: 54B30
MSC: 54D10
MSC: 54E05
idZBL: 07217188
idMR: MR4221828
DOI: 10.21136/MB.2019.0144-17
.
Date available: 2020-06-10T13:16:24Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148153
.
Reference: [1] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories: The Joy of Cats.Repr. Theory Appl. Categ. No. 17 {\it 2006} (2006), 1-507. Zbl 1113.18001, MR 2240597
Reference: [2] Baran, M.: Separation properties.Indian J. Pure Appl. Math. 23 (1992), 333-341. Zbl 0767.54014, MR 1166899
Reference: [3] Baran, M.: The notion of closedness in topological categories.Commentat. Math. Univ. Carolin. 34 (1993), 383-395. Zbl 0780.18003, MR 1241748
Reference: [4] Baran, M.: Generalized local separation properties.Indian J. Pure Appl. Math. 25 (1994), 615-620. Zbl 0830.18001, MR 1285223
Reference: [5] Baran, M.: Separation properties in topological categories.Math. Balk., New Ser. 10 (1996), 39-48. Zbl 1036.54502, MR 1429148
Reference: [6] Baran, M.: A notion of compactness in topological categories.Publ. Math. 50 (1997), 221-234. Zbl 0880.54010, MR 1446467
Reference: [7] Baran, M.: $T_3$ and $T_4$-objects in topological categories.Indian J. Pure Appl. Math. 29 (1998), 59-69. Zbl 0920.54009, MR 1613340
Reference: [8] Baran, M.: Closure operators in convergence spaces.Acta Math. Hung. 87 (2000), 33-45. Zbl 0963.54003, MR 1755877, 10.1023/A:1006768916033
Reference: [9] Baran, M.: $ PreT_2$ objects in topological categories.Appl. Categ. Struct. 17 (2009), 591-602. Zbl 1196.54018, MR 2564124, 10.1007/s10485-008-9161-4
Reference: [10] Baran, M., Al-Safar, J.: Quotient-reflective and bireflective subcategories of the category of preordered sets.Topology Appl. 158 (2011), 2076-2084. Zbl 1226.54015, MR 2825362, 10.1016/j.topol.2011.06.043
Reference: [11] Baran, M., Altindis, H.: $T_2$-objects in topological categories.Acta Math. Hung. 71 (1996), 41-48. Zbl 0857.18002, MR 1398023, 10.1007/BF00052193
Reference: [12] Baran, M., Kula, M.: A note on connectedness.Publ. Math. 68 (2006), 489-501. Zbl 1099.54019, MR 2212333
Reference: [13] Baran, M., Kula, S., Baran, T. M., Qasim, M.: Closure operators in semiuniform convergence spaces.Filomat 30 (2016), 131-140. Zbl 06749669, MR 3498758, 10.2298/FIL1601131B
Reference: [14] Dikranjan, D., Giuli, E.: Closure operators I.Topology Appl. 27 (1987), 129-143. Zbl 0634.54008, MR 0911687, 10.1016/0166-8641(87)90100-3
Reference: [15] Efremovich, V. A.: Infinitesimal spaces.Dokl. Akad. Nauk SSSR, N. Ser. 76 (1951), 341-343 Russian. Zbl 0042.16703, MR 0040748
Reference: [16] Efremovich, V. A.: The geometry of proximity. I.Mat. Sb., N. Ser. 31(73) (1952), 189-200 Russian. Zbl 0046.16302, MR 0055659
Reference: [17] Friedler, L.: Quotients of proximity spaces.Proc. Am. Math. Soc. 37 (1973), 589-594. Zbl 0228.54021, MR 0402691, 10.2307/2039491
Reference: [18] Hunsaker, W. N., Sharma, P. L.: Proximity spaces and topological functors.Proc. Am. Math. Soc. 45 (1974), 419-425. Zbl 0261.54019, MR 0353265, 10.2307/2039971
Reference: [19] Johnstone, P. T.: Topos Theory.London Mathematical Society Monographs, Vol. 10. Academic Press, London (1977). Zbl 0368.18001, MR 0470019
Reference: [20] Kula, M.: Separation properties at $p$ for the topological category of Cauchy spaces.Acta Math. Hung. 136 (2012), 1-15. Zbl 1274.54048, MR 2925752, 10.1007/s10474-012-0238-z
Reference: [21] Kula, M., Maraşlı, T., Özkan, S.: A note on closedness and connectedness in the category of proximity spaces.Filomat 28 (2014), 1483-1492. Zbl 06704866, MR 3360054, 10.2298/FIL1407483K
Reference: [22] Kula, M., Özkan, S., Maraşlı, T.: Pre-Hausdorff and Hausdorff proximity spaces.Filomat 31 (2017), 3837-3846. MR 3703876, 10.2298/fil1712837k
Reference: [23] Naimpally, S. A., Warrack, B. D.: Proximity Spaces.Cambridge Tracts in Mathematics and Mathematical Physics, No. 59. Cambridge University Press, London (1970). Zbl 0206.24601, MR 0278261
Reference: [24] Preuss, G.: Theory of Topological Structures. An Approach to Categorical Topology.Mathematics and Its Applications 39. D. Reidel Publishing Company, Dordrecht (1988). Zbl 0649.54001, MR 0937052, 10.1007/978-94-009-2859-6
Reference: [25] Sharma, P. L.: Proximity bases and subbases.Pac. J. Math. 37 (1971), 515-526. Zbl 0216.19301, MR 0305358, 10.2140/pjm.1971.37.515
Reference: [26] Smirnov, Y. M.: On proximity spaces.Mat. Sb., N. Ser. 31(73) (1952), 543-574 Russian. Zbl 0047.41903, MR 0055661
Reference: [27] Willard, S.: General Topology.Addison-Wesley Series in Mathematics. Publication Data Reading, Addison-Wesley Publishing Company, Massachusetts (1970). Zbl 0205.26601, MR 0264581
.

Files

Files Size Format View
MathBohem_145-2020-2_5.pdf 320.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo