Previous |  Up |  Next

Article

Title: Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces (English)
Author: Malik, Ishfaq Ahmad
Author: Jalal, Tanweer
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 2
Year: 2020
Pages: 191-204
Summary lang: English
.
Category: math
.
Summary: The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo's type fixed point theorem. The result is illustrated with help of an example. (English)
Keyword: Darbo's fixed point theorem
Keyword: equicontinuous sets
Keyword: infinite system of second order differential equations
Keyword: infinite system of integral equations
Keyword: measures of noncompactness
MSC: 34A34
MSC: 34G20
MSC: 47H08
idZBL: 07217189
idMR: MR4221829
DOI: 10.21136/MB.2019.0086-18
.
Date available: 2020-06-10T13:16:53Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148154
.
Reference: [1] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions.Acta Appl. Math. 109 (2010), 973-1033. Zbl 1198.26004, MR 2596185, 10.1007/s10440-008-9356-6
Reference: [2] Aghajani, A., Pourhadi, E.: Application of measure of noncompactness to $\ell_1$-solvability of infinite systems of second order differential equations.Bull. Belg. Math. Soc.-Simon Stevin 22 (2015), 105-118. Zbl 1329.47082, MR 3325725, 10.36045/bbms/1426856862
Reference: [3] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). Zbl 0441.47056, MR 0591679
Reference: [4] Banaś, J., Lecko, M.: Solvability of infinite systems of differential equations in Banach sequence spaces.J. Comput. Appl. Math. 137 (2001), 363-375. Zbl 0997.34048, MR 1865237, 10.1016/S0377-0427(00)00708-1
Reference: [5] Banaś, J., Mursaleen, M.: Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations.Springer, New Delhi (2014). Zbl 1323.47001, MR 3289625, 10.1007/978-81-322-1886-9
Reference: [6] Banaś, J., Mursaleen, M., Rizvi, S. M. H.: Existence of solutions to a boundary-value problem for an infinite system of differential equations.Electron. J. Differ. Equ. 2017 (2017), Paper No. 262, 12 pages. Zbl 1372.34096, MR 3723535
Reference: [7] Darbo, G.: Punti uniti in trasformazioni a codominio non compatto.Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. Zbl 0064.35704, MR 0070164
Reference: [8] Deimling, K.: Ordinary Differential Equations in Banach Spaces.Lecture Notes in Mathematics 596. Springer, Berlin (1977). Zbl 0361.34050, MR 0463601, 10.1007/BFb0091636
Reference: [9] Deimling, K.: Nonlinear Functional Analysis.Dover Books on Mathematics. Dover Publications, Mineola (2010). Zbl 1257.47059, MR 0787404, 10.1007/978-3-662-00547-7
Reference: [10] Duffy, D. G.: Green's Functions with Applications.Studies in Advanced Mathematics CRC Press, Boca Raton (2015). Zbl 1343.35002, MR 1888091, 10.1201/b18159
Reference: [11] Klamka, J.: Schauder's fixed-point theorem in nonlinear controllability problems.Control Cybern. 29 (2000), 153-165. Zbl 1011.93001, MR 1775163
Reference: [12] Kuratowski, C.: Sur les espaces complets.Fundamenta 15 (1930), 301-309 French. Zbl 56.1124.04, 10.4064/fm-15-1-301-309
Reference: [13] Liu, Z., Kang, S. M.: Applications of Schauder's fixed-point theorem with respect to iterated functional equations.Appl. Math. Lett. 14 (2001), 955-962. Zbl 0990.39019, MR 1855937, 10.1016/S0893-9659(01)00071-4
Reference: [14] Malkowsky, E., Rakočević, V.: An introduction into the theory of sequence spaces and measures of noncompactness.Four Topics in Mathematics Zbornik Radova {\it 9(17)}. Matematički Institut SANU, Beograd (2000), 143-234 B. Stanković. Zbl 0996.46006, MR 1780493
Reference: [15] Mohiuddine, S. A., Srivastava, H. M., Alotaibi, A.: Application of measures of noncompactness to the infinite system of second-order differential equations in $\ell_p$ spaces.Adv. Difference Equ. 2016 (2016), Paper No. 317, 13 pages. Zbl 06988399, MR 3579739, 10.1186/s13662-016-1016-y
Reference: [16] Mursaleen, M.: Application of measure of noncompactness to infinite systems of differential equations.Can. Math. Bull. 56 (2013), 388-394. Zbl 1275.47133, MR 3043065, 10.4153/CMB-2011-170-7
Reference: [17] Mursaleen, M., Mohiuddine, S. A.: Applications of measures of noncompactness to the infinite system of differential equations in $\ell_p$ spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2111-2115. Zbl 1256.47060, MR 2870903, 10.1016/j.na.2011.10.011
Reference: [18] Mursaleen, M., Rizvi, S. M. H.: Solvability of infinite systems of second order differential equations in $c_0$ and $\ell_1$ by Meir-Keeler condensing operators.Proc. Am. Math. Soc. 144 (2016), 4279-4289. Zbl 1385.47021, MR 3531179, 10.1090/proc/13048
Reference: [19] Mursaleen, M., Rizvi, S. M. H., Samet, B.: Solvability of a class of boundary value problems in the space of convergent sequences.Appl. Anal. 97 (2018), 1829-1845. Zbl 1396.93063, MR 3832170, 10.1080/00036811.2017.1343464
Reference: [20] Srivastava, H. M., Das, A., Hazarika, B., Mohiuddine, S. A.: Existence of solutions of infinite systems of differential equations of general order with boundary conditions in the spaces $c_0$ and $\ell_1$ via the measure of noncompactness.Math. Methods Appl. Sci. 41 (2018), 3558-3569. Zbl 06923678, MR 3820168, 10.1002/mma.4845
.

Files

Files Size Format View
MathBohem_145-2020-2_6.pdf 311.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo