Previous |  Up |  Next

Article

Title: Translation surfaces of finite type in ${\rm Sol}_{3}$ (English)
Author: Senoussi, Bendehiba
Author: Al-Zoubi, Hassan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 2
Year: 2020
Pages: 237-256
Summary lang: English
.
Category: math
.
Summary: In the homogeneous space Sol$_{3}$, a translation surface is parametrized by $r(s,t)=\gamma _{1}(s)\ast \gamma _{2}(t)$, where $\gamma _{1}$ and $\gamma _{2}$ are curves contained in coordinate planes. In this article, we study translation invariant surfaces in ${\rm Sol}_{3}$, which has finite type immersion. (English)
Keyword: Laplacian operator
Keyword: homogeneous space
Keyword: invariant surface
Keyword: surfaces of coordinate finite type
MSC: 53B25
MSC: 53C30
idZBL: Zbl 07286003
idMR: MR4143707
DOI: 10.14712/1213-7243.2020.018
.
Date available: 2020-10-13T13:15:12Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148283
.
Reference: [1] Al-Zoubi H., Stamatakis S., Al-Mashaleh W., Awadallah M.: Translation surfaces of coordinate finite type.Indian J. Math. 59 (2017), no. 2, 227–241. MR 3700538
Reference: [2] Bekkar M., Senoussi B.: Translation surfaces in the $3$-dimensional space satisfying $\Delta ^{III}r_{i}=\mu _{i}r_{i}$.J. Geom. 103 (2012), no. 3, 367–374. MR 3017050, 10.1007/s00022-012-0136-0
Reference: [3] Chen B.-Y.: Total Mean Curvature and Submanifolds of Finite Type.Series in Pure Mathematics, 1, World Scientific Publishing, Singapore, 1984. Zbl 0537.53049, MR 0749575
Reference: [4] Dillen F., Verstraelen L., Zafindratafa G.: A generalization of the translation surfaces of Scherk.Differential Geometry in honor of Radu Rosca. K. U. L. (1991), 107–109.
Reference: [5] Inoguchi J., López R., Munteanu M.-I.: Minimal translation surfaces in the Heisenberg group $ Nil_{3}$.Geom. Dedicata 161 (2012), 221–231. MR 2994039, 10.1007/s10711-012-9702-8
Reference: [6] López R., Munteanu M. I.: On the geometry of constant angle surfaces in $ Sol_{3}$.Kyushu J. Math. 65 (2011), no. 2, 237–249. MR 2977760, 10.2206/kyushujm.65.237
Reference: [7] López R., Munteanu M. I.: Minimal translation surfaces in $ Sol_{3}$.J. Math. Soc. Japan. 64 (2012), no. 3, 985–1003. MR 2965436, 10.2969/jmsj/06430985
Reference: [8] Scott P.: The geometries of $3$-manifolds.Bull. London Math. Soc. 15 (1983), no. 5, 401–487. Zbl 0662.57001, MR 0705527, 10.1112/blms/15.5.401
Reference: [9] Takahashi T.: Minimal immersions of Riemannian manifolds.J. Math. Soc. Japan 18 (1966), 380–385. MR 0198393, 10.2969/jmsj/01840380
Reference: [10] Troyanov M.: L'horizon de $ SOL$.Exposition. Math. 16 (1998), no. 5, 441–479. MR 1656902
Reference: [11] Yoon D. W.: Coordinate finite type invariant surfaces in $ Sol$ spaces.Bull. Iranian Math. Soc. 43 (2017), no. 3, 649–658. MR 3670886
Reference: [12] Yoon D. W., Lee C. W., Karacan M. K.: Some translation surfaces in the $3$-dimensional Heisenberg group.Bull. Korean Math. Soc. 50 (2013), no. 4, 1329–1343. MR 3092394, 10.4134/BKMS.2013.50.4.1329
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-2_9.pdf 303.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo