Previous |  Up |  Next

Article

Title: Weingarten hypersurfaces of the spherical type in Euclidean spaces (English)
Author: Machado, Cid D. F.
Author: Riveros, Carlos M. C.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 2
Year: 2020
Pages: 213-236
Summary lang: English
.
Category: math
.
Summary: We generalize a parametrization obtained by A.\,V. Corro in (2006) in the three-dimensional Euclidean space. Using this parametrization we study a class of oriented hypersurfaces $M^n$, $n\geq 2$, in Euclidean space satisfying a relation $\sum_{r=1}^{n} (-1)^{r+1}rf^{r-1} { n \choose r}H_r=0,$ where $H_r$ is the $r$th mean curvature and $f\in C^{\infty}(M^n;\mathbb{R})$, these hypersurfaces are called Weingarten hypersurfaces of the spherical type. This class of hypersurfaces includes the surfaces of the spherical type (Laguerré minimal surfaces). We characterize these hypersurfaces in terms of harmonic applications. Also, we classify the Weingarten hypersurfaces of the spherical type of rotation and we give explicit examples. (English)
Keyword: Weingarten hypersurface
Keyword: Laguerre minimal surface
Keyword: $r$th mean curvature
Keyword: Laplace--Beltrami operator
MSC: 53A35
MSC: 53C42
idZBL: Zbl 07286002
idMR: MR4143706
DOI: 10.14712/1213-7243.2020.024
.
Date available: 2020-10-13T13:14:07Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148286
.
Reference: [1] Blaschke W.: I. Grundformeln der Flächentheorie.Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 176–194 (German). MR 3069426, 10.1007/BF02954623
Reference: [2] Blaschke W.: II. Flächentheorie in Ebenenkoordinaten.Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 195–212 (German). MR 3069427, 10.1007/BF02954624
Reference: [3] Blaschke W.: III. Beiträge zur Flächentheorie.Abh. Math. Sem. Univ. Hamburg 4 (1925), no. 1, 1–12 (German). MR 3069436, 10.1007/BF02950714
Reference: [4] Blaschke W.: Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie III.Springer, Berlin, 1929 (German). MR 0015247
Reference: [5] Corro A. V.: Generalized Weingarten surfaces of Bryant type in hyperbolic $3$-space.Mat. Comtemp. 30 (2006), 71–89. MR 2373504
Reference: [6] Corro A. M. V., Fernandes K. V., Riveros C. M. C.: Generalized Weingarten surfaces of harmonic type in hyperbolic $3$-space.Differential Geom. Appl. 58 (2018), 202–226. MR 3777754, 10.1016/j.difgeo.2018.02.001
Reference: [7] Dias D. G.: Classes de hipersuperfícies Weingarten generalizada no espaço euclidiano.Ph.D. Thesis, Universidade Federal de Goiás, Goiânia, 2014 (Portuguese).
Reference: [8] Ferreira W., Roitman P.: Hypersurfaces in hyperbolic space associated with the conformal scalar curvature equation $\delta u+ku^{\frac{n+2}{n-2}}= 0$.Diffferential Geom. Appl. 27 (2009), no. 2, 279–295. MR 2503979, 10.1016/j.difgeo.2008.10.009
Reference: [9] Gálvez J. A., Martínez A., Milán F.: Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity.Trans. Amer. Math. Soc. 356 (2004), no. 9, 3405–3428. MR 2055739, 10.1090/S0002-9947-04-03592-5
Reference: [10] Miyagaki O. H.: Equaç oes elípticas modeladas em variedades Riemannianas: Uma introdução.Apresentado em Milênio Workshop em equaç oes elípticas, João Pessoa, 2004 (Portuguese).
Reference: [11] Obata M.: The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature.J. Differential Geometry 2 (1968), 217–223. MR 0234388, 10.4310/jdg/1214428258
Reference: [12] Pottmann H., Grohs P., Mitra N. J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity.Adv. Comput. Math. 31 (2009), no. 4, 391–419. MR 2558260, 10.1007/s10444-008-9076-5
Reference: [13] Schief W. K.: On Laplace–Darboux-type sequences of generalized Weingarten surfaces.J. Math. Phys. 41 (2000), no. 9, 6566–6599. MR 1779663, 10.1063/1.1286980
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-2_8.pdf 407.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo