Title:
|
Weingarten hypersurfaces of the spherical type in Euclidean spaces (English) |
Author:
|
Machado, Cid D. F. |
Author:
|
Riveros, Carlos M. C. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
213-236 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We generalize a parametrization obtained by A.\,V. Corro in (2006) in the three-dimensional Euclidean space. Using this parametrization we study a class of oriented hypersurfaces $M^n$, $n\geq 2$, in Euclidean space satisfying a relation $\sum_{r=1}^{n} (-1)^{r+1}rf^{r-1} { n \choose r}H_r=0,$ where $H_r$ is the $r$th mean curvature and $f\in C^{\infty}(M^n;\mathbb{R})$, these hypersurfaces are called Weingarten hypersurfaces of the spherical type. This class of hypersurfaces includes the surfaces of the spherical type (Laguerré minimal surfaces). We characterize these hypersurfaces in terms of harmonic applications. Also, we classify the Weingarten hypersurfaces of the spherical type of rotation and we give explicit examples. (English) |
Keyword:
|
Weingarten hypersurface |
Keyword:
|
Laguerre minimal surface |
Keyword:
|
$r$th mean curvature |
Keyword:
|
Laplace--Beltrami operator |
MSC:
|
53A35 |
MSC:
|
53C42 |
idZBL:
|
Zbl 07286002 |
idMR:
|
MR4143706 |
DOI:
|
10.14712/1213-7243.2020.024 |
. |
Date available:
|
2020-10-13T13:14:07Z |
Last updated:
|
2022-07-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148286 |
. |
Reference:
|
[1] Blaschke W.: I. Grundformeln der Flächentheorie.Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 176–194 (German). MR 3069426, 10.1007/BF02954623 |
Reference:
|
[2] Blaschke W.: II. Flächentheorie in Ebenenkoordinaten.Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 195–212 (German). MR 3069427, 10.1007/BF02954624 |
Reference:
|
[3] Blaschke W.: III. Beiträge zur Flächentheorie.Abh. Math. Sem. Univ. Hamburg 4 (1925), no. 1, 1–12 (German). MR 3069436, 10.1007/BF02950714 |
Reference:
|
[4] Blaschke W.: Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie III.Springer, Berlin, 1929 (German). MR 0015247 |
Reference:
|
[5] Corro A. V.: Generalized Weingarten surfaces of Bryant type in hyperbolic $3$-space.Mat. Comtemp. 30 (2006), 71–89. MR 2373504 |
Reference:
|
[6] Corro A. M. V., Fernandes K. V., Riveros C. M. C.: Generalized Weingarten surfaces of harmonic type in hyperbolic $3$-space.Differential Geom. Appl. 58 (2018), 202–226. MR 3777754, 10.1016/j.difgeo.2018.02.001 |
Reference:
|
[7] Dias D. G.: Classes de hipersuperfícies Weingarten generalizada no espaço euclidiano.Ph.D. Thesis, Universidade Federal de Goiás, Goiânia, 2014 (Portuguese). |
Reference:
|
[8] Ferreira W., Roitman P.: Hypersurfaces in hyperbolic space associated with the conformal scalar curvature equation $\delta u+ku^{\frac{n+2}{n-2}}= 0$.Diffferential Geom. Appl. 27 (2009), no. 2, 279–295. MR 2503979, 10.1016/j.difgeo.2008.10.009 |
Reference:
|
[9] Gálvez J. A., Martínez A., Milán F.: Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity.Trans. Amer. Math. Soc. 356 (2004), no. 9, 3405–3428. MR 2055739, 10.1090/S0002-9947-04-03592-5 |
Reference:
|
[10] Miyagaki O. H.: Equaç oes elípticas modeladas em variedades Riemannianas: Uma introdução.Apresentado em Milênio Workshop em equaç oes elípticas, João Pessoa, 2004 (Portuguese). |
Reference:
|
[11] Obata M.: The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature.J. Differential Geometry 2 (1968), 217–223. MR 0234388, 10.4310/jdg/1214428258 |
Reference:
|
[12] Pottmann H., Grohs P., Mitra N. J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity.Adv. Comput. Math. 31 (2009), no. 4, 391–419. MR 2558260, 10.1007/s10444-008-9076-5 |
Reference:
|
[13] Schief W. K.: On Laplace–Darboux-type sequences of generalized Weingarten surfaces.J. Math. Phys. 41 (2000), no. 9, 6566–6599. MR 1779663, 10.1063/1.1286980 |
. |