Previous |  Up |  Next

Article

Title: Geodesic graphs in Randers g.o. spaces (English)
Author: Dušek, Zdeněk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 2
Year: 2020
Pages: 195-211
Summary lang: English
.
Category: math
.
Summary: The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed. (English)
Keyword: Finsler space
Keyword: Randers space
Keyword: homogeneous geodesic
Keyword: geodesic graph
Keyword: g.o. space
MSC: 53C22
MSC: 53C30
MSC: 53C60
idZBL: Zbl 07286001
idMR: MR4143705
DOI: 10.14712/1213-7243.2020.023
.
Date available: 2020-10-13T13:12:53Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148284
.
Reference: [1] Alekseevsky D., Arvanitoyeorgos A.: Riemannian flag manifolds with homogeneous geodesics.Trans. Amer. Math. Soc. 359 (2007), no. 8, 3769–3789. MR 2302514
Reference: [2] Bao D., Chern S.-S., Shen Z.: An Introduction to Riemann-Finsler Geometry.Graduate Texts in Mathematics, 200, Springer, New York, 2000. MR 1747675, 10.1007/978-1-4612-1268-3
Reference: [3] Berndt J., Tricerri F., Vanhecke L.: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces.Lecture Notes in Mathematics, 1598, Springer, Berlin, 1995. MR 1340192
Reference: [4] Deng S.: Homogeneous Finsler Spaces.Springer Monographs in Mathematics, Springer, New York, 2012. MR 2962626
Reference: [5] Dušek Z.: Explicit geodesic graphs on some H-type groups.Proc. of the 21st Winter School Geometry and Physics, Srní, 2001, Rend. Circ. Mat. Palermo (2) Suppl. (2002), no. 69, 77–88. Zbl 1025.53019, MR 1972426
Reference: [6] Dušek Z.: Structure of geodesics in the flag manifold $ SO(7)/ U(3)$.Differential Geometry and Its Applications, World Sci. Publ., Hackensack, 2008, 89–98. MR 2462785, 10.1142/9789812790613_0009
Reference: [7] Dušek Z.: Homogeneous geodesics and g.o. manifolds.Note Mat. 38 (2018), no. 1, 1–15. MR 3809649
Reference: [8] Dušek Z., Kowalski O.: Geodesic graphs on the $13$-dimensional group of Heisenberg type.Math. Nachr. 254/255 (2003), 87–96. MR 1983957, 10.1002/mana.200310054
Reference: [9] Gordon C. S., Nikonorov Yu. G.: Geodesic orbit Riemannian structures on ${\mathbb{R}}^n$.J. Geom. Phys. 134 (2018), 235–243. MR 3886938, 10.1016/j.geomphys.2018.08.018
Reference: [10] Kowalski O., Nikčević S.: On geodesic graphs of Riemannian g.o. spaces.Arch. Math. (Basel) 73 (1999), no. 3, 223–234; Appendix: Arch. Math. (Basel) 79 (2002), no. 2, 158–160. MR 1924152, 10.1007/s000130050032
Reference: [11] Kowalski O., Vanhecke L.: Riemannian manifolds with homogeneous geodesics.Boll. Un. Math. Ital. B(7) 5 (1991), no. 1, 189–246. MR 1110676
Reference: [12] Latifi D.: Homogeneous geodesics in homogeneous Finsler spaces.J. Geom. Phys. 57 (2007), no. 5, 1421–1433. MR 2289656, 10.1016/j.geomphys.2006.11.004
Reference: [13] Lauret J.: Modified H-type groups and symmetric-like Riemannian spaces.Differential Geom. Appl. 10 (1999), no. 2, 121–143. MR 1669469, 10.1016/S0926-2245(99)00002-9
Reference: [14] Nikonorov Yu. G.: On the structure of geodesic orbit Riemannian spaces.Ann. Global Anal. Geom. 52 (2017), no. 3, 289–311. MR 3711602, 10.1007/s10455-017-9558-0
Reference: [15] Parhizkar M., Latifi D.: Geodesic vectors of Randers metrics on nilpotent Lie groups of dimension five.Glob. J. Adv. Res. Class. Mod. Geom. 7 (2018), no. 2, 92–101. MR 3861222
Reference: [16] Riehm C.: Explicit spin representations and Lie algebras of Heisenberg type.J. London Math. Soc. (2) 29 (1984), no. 1, 49–62. MR 0734990, 10.1112/jlms/s2-29.1.49
Reference: [17] Szenthe J.: Sur la connection naturelle à torsion nulle.Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 383–398 (French). MR 0431042
Reference: [18] Yan Z., Deng S.: Finsler spaces whose geodesics are orbits.Differential Geom. Appl. 36 (2014), 1–23. MR 3262894, 10.1016/j.difgeo.2014.06.006
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-2_7.pdf 314.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo