Previous |  Up |  Next

Article

Title: Maximal non valuation domains in an integral domain (English)
Author: Kumar, Rahul
Author: Gaur, Atul
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1019-1032
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^{\prime _S} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^{\prime _S},S)$ is established. (English)
Keyword: maximal non valuation domain
Keyword: valuation subring
Keyword: integrally closed subring
MSC: 13B02
MSC: 13B22
MSC: 13B30
MSC: 13F30
MSC: 13G05
idZBL: 07285976
idMR: MR4181793
DOI: 10.21136/CMJ.2020.0098-19
.
Date available: 2020-11-18T09:44:42Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148408
.
Reference: [1] Akiba, T.: A note on AV-domains.Bull. Kyoto Univ. Educ., Ser. B 31 (1967), 1-3. Zbl 0265.13015, MR 0218339
Reference: [2] Ayache, A.: Some finiteness chain conditions on the set of intermediate rings.J. Algebra 323 (2010), 3111-3123. Zbl 1196.13007, MR 2629702, 10.1016/j.jalgebra.2010.03.009
Reference: [3] Ayache, A.: The set of indeterminate rings of a normal pair as a partially ordered set.Ric. Mat. 60 (2011), 193-201. Zbl 1264.13012, MR 2852336, 10.1007/s11587-010-0102-9
Reference: [4] Ayache, A., Echi, O.: Valuation and pseudovaluation subrings of an integral domain.Commun. Algebra 34 (2006), 2467-2483. Zbl 1105.13028, MR 2240386, 10.1080/00927870600650515
Reference: [5] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings.Math. Z. 225 (1997), 49-65. Zbl 0868.13007, MR 1451331, 10.1007/PL00004598
Reference: [6] Nasr, M. Ben, Jarboui, N.: Maximal non-Jaffard subrings of a field.Publ. Mat., Barc. 44 (2000), 157-175. Zbl 0976.13007, MR 1775744, 10.5565/PUBLMAT_44100_05
Reference: [7] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings.Houston J. Math. 37 (2011), 47-59. Zbl 1222.13007, MR 2786545
Reference: [8] Davis, E. D.: Overrings of commutative rings III: Normal pairs.Trans. Am. Math. Soc. 182 (1973), 175-185. Zbl 0272.13004, MR 0325599, 10.1090/S0002-9947-1973-0325599-3
Reference: [9] Dechéne, L. I.: Adjacent Extensions of Rings: PhD Dissertation.University of California, Riverside (1978). MR 2627830
Reference: [10] Dobbs, D. E.: Divided rings and going-down.Pac. J. Math. 67 (1976), 353-363. Zbl 0326.13002, MR 0424795, 10.2140/pjm.1976.67.353
Reference: [11] Dobbs, D. E., Fontana, M.: Universally incomparable ring-homomorphisms.Bull. Aust. Math. Soc. 29 (1984), 289-302. Zbl 0535.13006, MR 0748722, 10.1017/S0004972700021547
Reference: [12] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP.J. Algebra 371 (2012), 391-429. Zbl 1271.13022, MR 2975403, 10.1016/j.jalgebra.2012.07.055
Reference: [13] Fontana, M.: Topologically defined classes of commutative rings.Ann. Mat. Pura Appl., IV. Ser. 123 (1980), 331-355. Zbl 0443.13001, MR 0581935, 10.1007/BF01796550
Reference: [14] Gilbert, M. S.: Extensions of Commutative Rings with Linearly Ordered Intermediate Rings: PhD Dissertation.University of Tennessee, Knoxville (1996). MR 2695057
Reference: [15] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain.Proc. Am. Math. Soc. 131 (2003), 2337-2346. Zbl 1017.13009, MR 1974630, 10.1090/S0002-9939-02-06816-8
Reference: [16] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains.Pac. J. Math. 75 (1978), 137-147. Zbl 0368.13002, MR 0485811, 10.2140/pjm.1978.75.137
Reference: [17] Jarboui, N., Trabelsi, S.: Some results about proper overrings of pseudo-valuation domains.J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. Zbl 1343.13002, MR 3479458, 10.1142/S0219498816500997
Reference: [18] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings.J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. Zbl 1395.13006, MR 3786742, 10.1142/S0219498818500639
Reference: [19] Mimouni, A., Samman, M.: Semistar-operations on valuation domains.Focus on Commutative Rings Research Nova Science Publishers, New York (2006), 131-141. Zbl 1155.13001, MR 2387747
Reference: [20] Modica, M. L.: Maximal Subrings: PhD Dissertation.University of Chicago, Chicago (1975). MR 2611729
.

Files

Files Size Format View
CzechMathJ_70-2020-4_8.pdf 309.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo