Previous |  Up |  Next

Article

Title: Increasing sequences of sectorial forms (English)
Author: Vogt, Hendrik
Author: Voigt, Jürgen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1033-1046
Summary lang: English
.
Category: math
.
Summary: We prove convergence results for `increasing' sequences of sectorial forms. We treat both the case of closed forms and the case of non-closable forms. (English)
Keyword: sectorial form
Keyword: strong resolvent convergence
MSC: 47A07
idZBL: 07285977
idMR: MR4181794
DOI: 10.21136/CMJ.2020.0101-19
.
Date available: 2020-11-18T09:45:14Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148409
.
Reference: [1] Arendt, W.: Approximation of degenerate semigroups.Taiwanese J. Math. 5 (2001), 279-295. Zbl 1025.47023, MR 1832168, 10.11650/twjm/1500407337
Reference: [2] Arendt, W., Elst, A. F. M. ter: Sectorial forms and degenerate differential operators.J. Oper. Theory 67 (2012), 33-72. Zbl 1243.47009, MR 2881534
Reference: [3] Arendt, W., Nikolski, N.: Vector-valued holomorphic functions revisited.Math. Z. 234 (2000), 777-805. Zbl 0976.46030, MR 1778409, 10.1007/s002090050008
Reference: [4] Arens, R.: Operational calculus of linear relations.Pac. J. Math. 11 (1961), 9-23. Zbl 0102.10201, MR 0123188, 10.2140/pjm.1961.11.9
Reference: [5] Batty, C. J. K., Elst, A. F. M. ter: On series of sectorial forms.J. Evol. Equ. 14 (2014), 29-47. Zbl 1320.47003, MR 3169030, 10.1007/s00028-013-0205-3
Reference: [6] Hassi, S., Sandovici, A., Snoo, H. S. V. de, Winkler, H.: Form sums of nonnegative selfadjoint operators.Acta Math. Hung. 111 (2006), 81-105. Zbl 1122.47011, MR 2188974, 10.1007/s10474-006-0036-6
Reference: [7] Kato, T.: Perturbation Theory for Linear Operators.Grundlehren der mathematischen Wissenschaften 132, Springer, Berlin (1966). Zbl 0148.12601, MR 0203473, 10.1007/978-3-662-12678-3_9
Reference: [8] Kato, T.: Perturbation Theory for Linear Operators.Grundlehren der mathematischen Wissenschaften 132, Springer, Berlin (1980). Zbl 0435.47001, MR 0203473
Reference: [9] Kunze, M.: Form Methods for Linear Evolution Problems on Hilbert Spaces: Diplomarbeit.Fakultät für Mathematik und Wirtschaftswissenschaften, Universität Ulm, Ulm (2005), Available at \brokenlink{https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi. {inst.020/abschlussarbeiten/diplomarbeit_kunze.pdf}}.
Reference: [10] Ouhabaz, E.-M.: Second order elliptic operators with essential spectrum $[0,\infty)$ on $L^p$.Commun. Partial Differ. Equations 20 (1995), 763-773. Zbl 0869.35065, MR 1326906, 10.1080/03605309508821114
Reference: [11] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44, Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1
Reference: [12] Simon, B.: A canonical decomposition for quadratic forms with applications to monotone convergence theorems.J. Funct. Anal. 28 (1978), 377-385. Zbl 0413.47029, MR 0500266, 10.1016/0022-1236(78)90094-0
Reference: [13] Vogt, H., Voigt, J.: Holomorphic families of forms, operators and {$C_0$}-semigroups.Monatsh. Math. 187 (2018), 375-380. Zbl 07031542, MR 3850318, 10.1007/s00605-017-1132-0
.

Files

Files Size Format View
CzechMathJ_70-2020-4_9.pdf 316.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo