Previous |  Up |  Next

Article

Title: A note on L-Dunford-Pettis sets in a topological dual Banach space (English)
Author: Retbi, Abderrahman
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1047-1057
Summary lang: English
.
Category: math
.
Summary: The present paper is devoted to some applications of the notion of L-Dunford-Pettis sets to several classes of operators on Banach lattices. More precisely, we establish some characterizations of weak Dunford-Pettis, Dunford-Pettis completely continuous, and weak almost Dunford-Pettis operators. Next, we study the relationships between L-Dunford-Pettis, and Dunford-Pettis (relatively compact) sets in topological dual Banach spaces. (English)
Keyword: L-Dunford-Pettis set
Keyword: weak almost Dunford-Pettis operator
Keyword: weak Dunford-Pettis property
Keyword: Banach lattice
MSC: 46A40
MSC: 46B40
MSC: 46B42
idZBL: 07285978
idMR: MR4181795
DOI: 10.21136/CMJ.2020.0119-19
.
Date available: 2020-11-18T09:45:43Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148410
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer, Berlin (2006). Zbl 1098.47001, MR 2262133, 10.1007/978-1-4020-5008-4
Reference: [2] Aqzzouz, B., Bouras, K.: (L) sets and almost (L) sets in Banach lattices.Quaest. Math. 36 (2013), 107-118. Zbl 1274.46053, MR 3043674, 10.2989/16073606.2013.779962
Reference: [3] Aqzzouz, B., Bouras, K., Moussa, M.: Duality property for positive weak Dunford-Pettis operators.Int. J. Math. Math. Sci. 2011 (2011), Article ID 609287, 12 pages. Zbl 1262.47057, MR 2821970, 10.1155/2011/609287
Reference: [4] Bouras, K., Moussa, M.: Banach lattice with weak Dunford-Pettis property.Int. J. Math. Comput. Phys. Electr. Comput. Eng. 5 (2011), 174-178.
Reference: [5] Chen, J. X., Chen, Z. L., Ji, G. X.: Almost limited sets in Banach lattices.J. Math. Anal. Appl. 412 (2014), 547-553. Zbl 1353.46015, MR 3145821, 10.1016/j.jmaa.2013.10.085
Reference: [6] Dodds, P. G., Fremlin, D. H.: Compact operators in Banach lattices.Isr. J. Math. 34 (1979), 287-320. Zbl 0438.47042, MR 0570888, 10.1007/BF02760610
Reference: [7] Ghenciu, I., Lewis, P.: The Dunford-Pettis property, the Gelfand-Phillips property, and $L$-sets.Colloq. Math. 106 (2006), 311-324. Zbl 1118.46017, MR 2283818, 10.4064/cm106-2-11
Reference: [8] Meyer-Nieberg, P.: Banach Lattices.Universitext, Springer, Berlin (1991). Zbl 0743.46015, MR 1128093, 10.1007/978-3-642-76724-1
Reference: [9] Retbi, A., Wahbi, B. El: L-Dunford-Pettis property in Banach spaces.Methods Func. Anal. Topol. 22 (2016), 387-392. Zbl 1374.46025, MR 3591087
Reference: [10] Wen, Y., Chen, J.: Characterizations of Banach spaces with relatively compact Dunford-Pettis sets.Adv. Math., Beijing 45 (2014), 122-132. Zbl 1374.47031, MR 3483491, 10.11845/sxjz.2014095b
Reference: [11] Wnuk, W.: Banach lattices with the weak Dunford-Pettis property.Atti Semin. Mat. Fis. Univ. Modena 42 (1994), 227-236. Zbl 0805.46023, MR 1282338
.

Files

Files Size Format View
CzechMathJ_70-2020-4_10.pdf 271.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo