Previous |  Up |  Next

Article

Title: A certain tensor on real hypersurfaces in a nonflat complex space form (English)
Author: Okumura, Kazuhiro
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1059-1077
Summary lang: English
.
Category: math
.
Summary: In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure $(\phi , \xi , \eta , g)$ induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field $h$ $(=\frac 12 \mathcal {L}_\xi \phi )$ plays an important role in contact Riemannian geometry. In this paper, we investigate real hypersurfaces in a nonflat complex space form from the viewpoint of the parallelism of the tensor field $h$. (English)
Keyword: nonflat complex space form
Keyword: real hypersurface
Keyword: Hopf hypersurface
Keyword: ruled real hypersurface
Keyword: the tensor field $h$
MSC: 53B25
MSC: 53C40
MSC: 53D15
idZBL: 07285979
idMR: MR4181796
DOI: 10.21136/CMJ.2020.0128-19
.
Date available: 2020-11-18T09:46:11Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148411
.
Reference: [1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds.Progress in Mathematics 203, Birkhäuser, Boston (2010). Zbl 1246.53001, MR 2682326, 10.1007/978-1-4757-3604-5
Reference: [2] Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space.J. Reine Angew. Math. 395 (1989), 132-141. Zbl 0655.53046, MR 0983062, 10.1515/crll.1989.395.132
Reference: [3] Cecil, T. E., Ryan, P. J.: Focal sets and real hypersurfaces in complex projective space.Trans. Am. Math. Soc. 269 (1982), 481-499. Zbl 0492.53039, MR 0637703, 10.1090/S0002-9947-1982-0637703-3
Reference: [4] Cecil, T. E., Ryan, P. J.: Geometry of Hypersurfaces.Springer Monographs in Mathematics, Springer, New York (2015). Zbl 1331.53001, MR 3408101, 10.1007/978-1-4939-3246-7
Reference: [5] Cho, J. T., Inoguchi, J.-I.: Contact metric hypersurfaces in complex space form.Differential Geometry and Submanifolds and Its Related Topics, World Scientific, Hackensack (2012), 87-97. Zbl 1303.53065, MR 3203474, 10.1142/9789814566285_0008
Reference: [6] Cho, J. T., Ki, U-H.: Jacobi operators on real hypersurfaces of a complex projective space.Tsukuba J. Math. 22 (1998), 145-156. Zbl 0983.53034, MR 1637676, 10.21099/tkbjm/1496163476
Reference: [7] Ghosh, A.: Certain types of real hypersurfaces in complex space forms.J. Geom. 109 (2018), Article ID 10, 9 pages. Zbl 1391.53018, MR 3755688, 10.1007/s00022-018-0405-7
Reference: [8] Ki, U-H., Kim, N-G.: Ruled real hypersurfaces of a complex space form.Acta Math. Sin., New Ser. 10 (1994), 401-409. Zbl 0819.53012, MR 1416151, 10.1007/BF02582036
Reference: [9] Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space.Trans. Am. Math. Soc. 296 (1986), 137-149. Zbl 0597.53021, MR 0837803, 10.1090/S0002-9947-1986-0837803-2
Reference: [10] Kimura, M.: Sectional curvatures of a holomorphic planes on a real hypersurface in $Pn(\mathbb{C})$.Math. Ann. 276 (1987), 487-497. Zbl 0605.53023, MR 0875342, 10.1007/BF01450843
Reference: [11] Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space.Math. Z. 202 (1989), 299-311. Zbl 0661.53015, MR 1017573, 10.1007/BF01159962
Reference: [12] Maeda, S., Tanabe, H.: A characterization of homogeneous real hypersurfaces of type (C), (D) and (E) in a complex projective space.Differ. Geom. Appl. 54, Part A (2017), 2-10. Zbl 1375.53029, MR 3693908, 10.1016/j.difgeo.2016.08.005
Reference: [13] Montiel, S.: Real hypersurfaces of a complex hyperbolic space.J. Math. Soc. Japan 37 (1985), 515-535. Zbl 0554.53021, MR 0792990, 10.2969/jmsj/03730515
Reference: [14] Montiel, S., Romero, A.: On some real hypersurfaces of a complex hyperbolic space.Geom. Dedicata 20 (1986), 245-261. Zbl 0587.53052, MR 0833849, 10.1007/BF00164402
Reference: [15] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms.Tight and Taut Submanifolds T. E. Cecil et al. Mathematical Sciences Research Institute Publications 32, Cambridge University Press, Cambridge (1998), 233-305. Zbl 0904.53005, MR 1486875
Reference: [16] Okumura, M.: On some real hypersurfaces of a complex projective space.Trans. Am. Math. Soc. 212 (1975), 355-364. Zbl 0288.53043, MR 0377787, 10.1090/S0002-9947-1975-0377787-X
Reference: [17] Pérez, J. D., Santos, F. G., Suh, Y. J.: Real hypersurfaces in complex projective space whose structure Jacobi operator is $\mathbb{D}$-parallel.Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 459-469. Zbl 1130.53039, MR 2307681, 10.36045/bbms/1161350687
Reference: [18] Perrone, D.: Contact Riemannian manifolds satisfying $R(X, \xi)\cdot R=0$.Yokohama Math. J. 39 (1992), 141-149. Zbl 0777.53046, MR 1150045
Reference: [19] Takagi, R.: On homogeneous real hypersurfaces in a complex projective space.Osaka J. Math. 10 (1973), 495-506. Zbl 0274.53062, MR 0336660
Reference: [20] Theofanidis, T., Xenos, P. J.: Real hypersurfaces of non-flat complex space forms in terms of the Jacobi structure operator.Publ. Math. 87 (2015), 175-189. Zbl 1363.53051, MR 3367919, 10.5486/pmd.2015.7115
.

Files

Files Size Format View
CzechMathJ_70-2020-4_11.pdf 336.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo