Title:
|
Main eigenvalues of real symmetric matrices with application to signed graphs (English) |
Author:
|
Stanić, Zoran |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
4 |
Year:
|
2020 |
Pages:
|
1091-1102 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An eigenvalue of a real symmetric matrix is called main if there is an associated eigenvector not orthogonal to the all-1 vector ${\bf j}$. Main eigenvalues are frequently considered in the framework of simple undirected graphs. In this study we generalize some results and then apply them to signed graphs. (English) |
Keyword:
|
main angle |
Keyword:
|
signed graph |
Keyword:
|
adjacency matrix |
Keyword:
|
Laplacian matrix |
Keyword:
|
Gram matrix |
MSC:
|
05C22 |
MSC:
|
05C50 |
idZBL:
|
07285981 |
idMR:
|
MR4181798 |
DOI:
|
10.21136/CMJ.2020.0147-19 |
. |
Date available:
|
2020-11-18T09:47:10Z |
Last updated:
|
2023-01-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148413 |
. |
Reference:
|
[1] Cardoso, D. M., Sciriha, I., Zerafa, C.: Main eigenvalues and $(\kappa, \tau)$-regular sets.Linear Algebra Appl. 432 (2010), 2399-2408. Zbl 1217.05136, MR 2599869, 10.1016/j.laa.2009.07.039 |
Reference:
|
[2] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.J. A. Barth Verlag, Heidelberg (1995). Zbl 0824.05046, MR 1324340 |
Reference:
|
[3] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518 |
Reference:
|
[4] Deng, H., Huang, H.: On the main signless Laplacian eigenvalues of a graph.Electron. J. Linear Algebra 26 (2013), 381-393. Zbl 1282.05109, MR 3084649, 10.13001/1081-3810.1659 |
Reference:
|
[5] Doob, M.: A geometric interpretation of the least eigenvalue of a line graph.Combinatorial Mathematics and its Applications R. C. Bose, T. A. Dowling University of North Carolina, Chapel Hill (1970), 126-135. Zbl 0209.55403, MR 0268060 |
Reference:
|
[6] Haynsworth, E. V.: Applications of a theorem on partitioned matrices.J. Res. Natl. Bur. Stand., Sec. B 63 (1959), 73-78. Zbl 0090.24104, MR 0109432, 10.6028/jres.063B.009 |
Reference:
|
[7] Hou, Y., Tang, Z., Shiu, W. C.: Some results on graphs with exactly two main eigenvalues.Appl. Math. Lett. 25 (2012), 1274-1278. Zbl 1248.05112, MR 2947393, 10.1016/j.aml.2011.11.025 |
Reference:
|
[8] Hou, Y., Zhou, H.: Trees with exactly two main eigenvalues.J. Nat. Sci. Hunan Norm. Univ. 28 (2005), 1-3 Chinese. Zbl 1109.05071, MR 2240441 |
Reference:
|
[9] Petersdorf, M., Sachs, H.: Über Spektrum, Automorphismengruppe und Teiler eines Graphen.Wiss. Z. Tech. Hochsch. Ilmenau 15 (1969), 123-128 German. Zbl 0199.27504, MR 0269552 |
Reference:
|
[10] Rowlinson, P.: The main eigenvalues of a graph: A survey.Appl. Anal. Discrete Math. 1 (2007), 445-471. Zbl 1199.05241, MR 2355287, 10.2298/AADM0702445R |
Reference:
|
[11] Stanić, Z.: Inequalities for Graph Eigenvalues.London Mathematical Society Lecture Note Series 423, Cambridge University Press, Cambridge (2015). Zbl 1368.05001, MR 3469535, 10.1017/CBO9781316341308 |
Reference:
|
[12] Stanić, Z.: Bounding the largest eigenvalue of signed graphs.Linear Algebra Appl. 573 (2019), 80-89. Zbl 1411.05109, MR 3933292, 10.1016/j.laa.2019.03.011 |
Reference:
|
[13] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications B. D. Acharya, G. O. H. Katona, J. Nešetřil Ramanujan Mathematical Society Lecture Notes Series 13, Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941 |
. |