Previous |  Up |  Next

Article

Title: Main eigenvalues of real symmetric matrices with application to signed graphs (English)
Author: Stanić, Zoran
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1091-1102
Summary lang: English
.
Category: math
.
Summary: An eigenvalue of a real symmetric matrix is called main if there is an associated eigenvector not orthogonal to the all-1 vector ${\bf j}$. Main eigenvalues are frequently considered in the framework of simple undirected graphs. In this study we generalize some results and then apply them to signed graphs. (English)
Keyword: main angle
Keyword: signed graph
Keyword: adjacency matrix
Keyword: Laplacian matrix
Keyword: Gram matrix
MSC: 05C22
MSC: 05C50
idZBL: 07285981
idMR: MR4181798
DOI: 10.21136/CMJ.2020.0147-19
.
Date available: 2020-11-18T09:47:10Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148413
.
Reference: [1] Cardoso, D. M., Sciriha, I., Zerafa, C.: Main eigenvalues and $(\kappa, \tau)$-regular sets.Linear Algebra Appl. 432 (2010), 2399-2408. Zbl 1217.05136, MR 2599869, 10.1016/j.laa.2009.07.039
Reference: [2] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.J. A. Barth Verlag, Heidelberg (1995). Zbl 0824.05046, MR 1324340
Reference: [3] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518
Reference: [4] Deng, H., Huang, H.: On the main signless Laplacian eigenvalues of a graph.Electron. J. Linear Algebra 26 (2013), 381-393. Zbl 1282.05109, MR 3084649, 10.13001/1081-3810.1659
Reference: [5] Doob, M.: A geometric interpretation of the least eigenvalue of a line graph.Combinatorial Mathematics and its Applications R. C. Bose, T. A. Dowling University of North Carolina, Chapel Hill (1970), 126-135. Zbl 0209.55403, MR 0268060
Reference: [6] Haynsworth, E. V.: Applications of a theorem on partitioned matrices.J. Res. Natl. Bur. Stand., Sec. B 63 (1959), 73-78. Zbl 0090.24104, MR 0109432, 10.6028/jres.063B.009
Reference: [7] Hou, Y., Tang, Z., Shiu, W. C.: Some results on graphs with exactly two main eigenvalues.Appl. Math. Lett. 25 (2012), 1274-1278. Zbl 1248.05112, MR 2947393, 10.1016/j.aml.2011.11.025
Reference: [8] Hou, Y., Zhou, H.: Trees with exactly two main eigenvalues.J. Nat. Sci. Hunan Norm. Univ. 28 (2005), 1-3 Chinese. Zbl 1109.05071, MR 2240441
Reference: [9] Petersdorf, M., Sachs, H.: Über Spektrum, Automorphismengruppe und Teiler eines Graphen.Wiss. Z. Tech. Hochsch. Ilmenau 15 (1969), 123-128 German. Zbl 0199.27504, MR 0269552
Reference: [10] Rowlinson, P.: The main eigenvalues of a graph: A survey.Appl. Anal. Discrete Math. 1 (2007), 445-471. Zbl 1199.05241, MR 2355287, 10.2298/AADM0702445R
Reference: [11] Stanić, Z.: Inequalities for Graph Eigenvalues.London Mathematical Society Lecture Note Series 423, Cambridge University Press, Cambridge (2015). Zbl 1368.05001, MR 3469535, 10.1017/CBO9781316341308
Reference: [12] Stanić, Z.: Bounding the largest eigenvalue of signed graphs.Linear Algebra Appl. 573 (2019), 80-89. Zbl 1411.05109, MR 3933292, 10.1016/j.laa.2019.03.011
Reference: [13] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications B. D. Acharya, G. O. H. Katona, J. Nešetřil Ramanujan Mathematical Society Lecture Notes Series 13, Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941
.

Files

Files Size Format View
CzechMathJ_70-2020-4_13.pdf 305.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo