Previous |  Up |  Next

Article

Title: $(\delta, 2)$-primary ideals of a commutative ring (English)
Author: Ulucak, Gülşen
Author: Çelikel, Ece Yetkin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1079-1090
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with nonzero identity, let $\mathcal {I(R)}$ be the set of all ideals of $R$ and $\delta \colon \mathcal {I(R)}\rightarrow \mathcal {I(R)}$ an expansion of ideals of $R$ defined by $I\mapsto \delta (I)$. We introduce the concept of $(\delta ,2)$-primary ideals in commutative rings. A proper ideal $I$ of $R$ is called a $(\delta ,2)$-primary ideal if whenever $a,b\in R$ and $ab\in I$, then $a^{2}\in I$ or $b^{2}\in \delta (I)$. Our purpose is to extend the concept of $2$-ideals to $(\delta ,2)$-primary ideals of commutative rings. Then we investigate the basic properties of $(\delta ,2)$-primary ideals and also discuss the relations among $(\delta ,2)$-primary, $\delta $-primary and $2$-prime ideals. (English)
Keyword: $(\delta ,2)$-primary ideal
Keyword: $2$-prime ideal
Keyword: $\delta $-primary ideal
MSC: 05A15
MSC: 13A15
MSC: 13F05
MSC: 13G05
idZBL: 07285980
idMR: MR4181797
DOI: 10.21136/CMJ.2020.0146-19
.
Date available: 2020-11-18T09:46:41Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148412
.
Reference: [1] Anderson, D. D., Knopp, K. R., Lewin, R. L.: Ideals generated by powers of elements.Bull. Aust. Math. Soc. 49 (1994), 373-376. Zbl 0820.13004, MR 1274517, 10.1017/S0004972700016488
Reference: [2] Anderson, D. D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley Publishing, Reading (1969). Zbl 0175.03601, MR 0242802, 10.1201/9780429493621
Reference: [4] Badawi, A., Fahid, B.: On weakly 2-absorbing $\delta$-primary ideals of commutative rings.(to appear) in Georgian Math. J. MR 4168712, 10.1515/gmj-2018-0070
Reference: [5] Badawi, A., Sonmez, D., Yesilot, G.: On weakly $\delta$-semiprimary ideals of commutative rings.Algebra Colloq. 25 (2018), 387-398. Zbl 1401.13007, MR 3843092, 10.1142/S1005386718000287
Reference: [6] Beddani, C., Messirdi, W.: 2-prime ideals and their applications.J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. Zbl 1338.13038, MR 3454713, 10.1142/S0219498816500511
Reference: [7] Gilmer, R.: Multiplicative Ideal Theory.Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston (1992). Zbl 0804.13001, MR 1204267
Reference: [8] Groenewald, N. J.: A characterization of semi-prime ideals in near-rings.J. Aust. Math. Soc., Ser. A 35 (1983), 194-196. Zbl 0521.16030, MR 0704424, 10.1017/S1446788700025660
Reference: [9] Huckaba, J. A.: Commutative Rings with Zero Divisors.Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, New York (1988). Zbl 0637.13001, MR 0938741
Reference: [10] Kaplansky, I.: Commutative Rings.University of Chicago Press, Chicago (1974). Zbl 0296.13001, MR 0345945
Reference: [11] Koc, S., Tekir, U., Ulucak, G.: On strongly quasi primary ideals.Bull. Korean Math. Soc. 56 (2019), 729-743. Zbl 1419.13040, MR 3960633, 10.4134/BKMS.b180522
Reference: [12] Zhao, D.: $\delta$-primary ideals of commutative rings.Kyungpook Math. J. 41 (2001), 17-22. Zbl 1028.13001, MR 1847432
.

Files

Files Size Format View
CzechMathJ_70-2020-4_12.pdf 287.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo