Title:
|
$(\delta, 2)$-primary ideals of a commutative ring (English) |
Author:
|
Ulucak, Gülşen |
Author:
|
Çelikel, Ece Yetkin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
4 |
Year:
|
2020 |
Pages:
|
1079-1090 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a commutative ring with nonzero identity, let $\mathcal {I(R)}$ be the set of all ideals of $R$ and $\delta \colon \mathcal {I(R)}\rightarrow \mathcal {I(R)}$ an expansion of ideals of $R$ defined by $I\mapsto \delta (I)$. We introduce the concept of $(\delta ,2)$-primary ideals in commutative rings. A proper ideal $I$ of $R$ is called a $(\delta ,2)$-primary ideal if whenever $a,b\in R$ and $ab\in I$, then $a^{2}\in I$ or $b^{2}\in \delta (I)$. Our purpose is to extend the concept of $2$-ideals to $(\delta ,2)$-primary ideals of commutative rings. Then we investigate the basic properties of $(\delta ,2)$-primary ideals and also discuss the relations among $(\delta ,2)$-primary, $\delta $-primary and $2$-prime ideals. (English) |
Keyword:
|
$(\delta ,2)$-primary ideal |
Keyword:
|
$2$-prime ideal |
Keyword:
|
$\delta $-primary ideal |
MSC:
|
05A15 |
MSC:
|
13A15 |
MSC:
|
13F05 |
MSC:
|
13G05 |
idZBL:
|
07285980 |
idMR:
|
MR4181797 |
DOI:
|
10.21136/CMJ.2020.0146-19 |
. |
Date available:
|
2020-11-18T09:46:41Z |
Last updated:
|
2023-01-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148412 |
. |
Reference:
|
[1] Anderson, D. D., Knopp, K. R., Lewin, R. L.: Ideals generated by powers of elements.Bull. Aust. Math. Soc. 49 (1994), 373-376. Zbl 0820.13004, MR 1274517, 10.1017/S0004972700016488 |
Reference:
|
[2] Anderson, D. D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3 |
Reference:
|
[3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley Publishing, Reading (1969). Zbl 0175.03601, MR 0242802, 10.1201/9780429493621 |
Reference:
|
[4] Badawi, A., Fahid, B.: On weakly 2-absorbing $\delta$-primary ideals of commutative rings.(to appear) in Georgian Math. J. MR 4168712, 10.1515/gmj-2018-0070 |
Reference:
|
[5] Badawi, A., Sonmez, D., Yesilot, G.: On weakly $\delta$-semiprimary ideals of commutative rings.Algebra Colloq. 25 (2018), 387-398. Zbl 1401.13007, MR 3843092, 10.1142/S1005386718000287 |
Reference:
|
[6] Beddani, C., Messirdi, W.: 2-prime ideals and their applications.J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. Zbl 1338.13038, MR 3454713, 10.1142/S0219498816500511 |
Reference:
|
[7] Gilmer, R.: Multiplicative Ideal Theory.Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston (1992). Zbl 0804.13001, MR 1204267 |
Reference:
|
[8] Groenewald, N. J.: A characterization of semi-prime ideals in near-rings.J. Aust. Math. Soc., Ser. A 35 (1983), 194-196. Zbl 0521.16030, MR 0704424, 10.1017/S1446788700025660 |
Reference:
|
[9] Huckaba, J. A.: Commutative Rings with Zero Divisors.Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, New York (1988). Zbl 0637.13001, MR 0938741 |
Reference:
|
[10] Kaplansky, I.: Commutative Rings.University of Chicago Press, Chicago (1974). Zbl 0296.13001, MR 0345945 |
Reference:
|
[11] Koc, S., Tekir, U., Ulucak, G.: On strongly quasi primary ideals.Bull. Korean Math. Soc. 56 (2019), 729-743. Zbl 1419.13040, MR 3960633, 10.4134/BKMS.b180522 |
Reference:
|
[12] Zhao, D.: $\delta$-primary ideals of commutative rings.Kyungpook Math. J. 41 (2001), 17-22. Zbl 1028.13001, MR 1847432 |
. |